SASTAV I SEZONSKA DINAMIKA IHTIOBENTOSA I JESTIVIH AVERTEBRATA U BOKOKOTORSKOM ZALIVU I MOGUCNOSTI NJHOVE EKSPLOATACIJE*)

COMPOSITION AND SEASONAL DYNAMICS OF 1CHTHYOBENTHOS AND LDIBLE INVERTEBRATA IN BAY OF BOKA KOTORSKA AND POSSIBILITIES OF THEIR EXPLOITATION

Vladimir Lepetić
Zavod za biologlju mora - Kotor

I UVOD

Počevsi od druge polovine XIX vijeka praktični razlozi navodili su mnoge istraživače da se poĕnu intenzivnije baviti istraživanjem populacija organizama mora i sa praktično-ckonomskog gledišta. Uvodenjom savremene opreme i tehnike, njene primjene u morskom ribolovu, posebno na iskorišćavanju ihtiobentoskih populacija upotrebom povlačnih mreža, tzv. vuča ili skoča«, pojavila se i opasnost osiromasenja pojedinih područja preintenzivnim ribolovom, sto se u praksi odrazilo u obliku smanjenja kolicine ulova po jedinici napora i u smanjenju prosječnih tjelesnih dužina vrsta koje ulaze u sastav lovine. S druge strane, sve veća potražnja za ribom kao hranom konstantno je pospjesivala ovaj proces biološkog prelova (sovesfishing? - Russel 1939.)

Osnovu za teoretska proučavanja dinamike ribljih populacıja u moru dao je Baranov 1918. godine. Poslije njega mnogi istraživači u svijetu bavili su se ovim problemom kao Russel (1931., 1939.), Thornpson i Bell (1934.), Graham (1935.), Schaefer (1954.), Beverton i Holt (1957.), Nikolski (1958.) i drugi.

[^0]U našem dijelu Jadrana do sada je vršeno relativno malo ovakvih istraživanja u odnosu na stvarne potrebe i brojnu ribarsku flotu koja se naglo razvila u posljeratnom periodu ne samo u italijanskom nego i is jugoslavenskom morskom ribarstvu.

Gast (1918.) je vršio istraživanja bentuskih naselja riba u Riječkom calivu, Kvarnericu i Velebitskom kanalu. Autor tada nije mogao utvrdili pojavu prelova na ovim podruçjima. Na osnovu istrasivanja koja je vrsio u Kvarneru D'Ancons (1926.) smatra da se Kvarner preintenzivno izlovijava i da, ako se tako nastavi, może lako da dode do osiromašenja mora.

Kotthaus i Zci (1938.) vrsili su istraživanja bentoskih naselja riba u Hrvatskom primorju. Autori su konstatovali pojavu prelova u nekim podrucjima sjevernog Jadrani (Planinski kanal), koja se odražavala u zmanjenju ulova po jediniei napora, kao i u sastavu samih lovina (male prosjec̃ne velicine i spolno nearele vrste), te predlazu da se kocarenje aa ovom podruçju podvrgne kvalitativnoj i kvantitativnoj kontroli sastava lovine u cilju svodenja ribolova kočarenjem na racionainu mjeru. Ova istraživanja su vrśena samo u zimskom periodu, te nisu mogla dati pregled promjena u naseljima u toku godine.

Istraživanja bentoskih naselja riba u kanalima srednje Dalmacije vrsili su Zei i Sabioncello (1940.), gdje su konstatovali stanje slično onome u Podvelebitskon i Planinskom kanalu u pogledu gustine naselja, a neste losije u pogledu kvalitativnog sastava

D'Ancona (1950 .) je konstatovao $2 a$ sjeverni Jadran da je lovostaj za vrijeme rata imao za posljedicu pové̃anje ulova po jedinici napora za 50% u prvim poslijeratnim godinama, kao i pojavu procentualnog poveċanja ihtiofagnili grabez̃ljivaca, a smanjenja ostalih grabez̃ljivaca i inače rijetkih hecbivora.

Zupanović (1953.) je izvršio statisticku analizu kočarskog ribolova u kanalima i priobalnom pojasu istočnog Jadrana. Autor, pored ostalog, konstatuje opadanje ulova po jedinici napora u poslijeratnom periodu intenzivnog kočarenja, te predlaže zabranu koc̃arenja za kraçi period u tsanalima i u priobalnom pojasu uopée brodovima preko 80 KS .

Kirinčić - Lepetić (1955.) daju podatke o bontoskim vrstama južnog dubokog Jadrana 1 o moguenosti njihove praktic̃ne eksploatacije pomocu dubinskih mehanizovanih strukova.

Karlovac (1959.) daje podatke o kočarskim lovinama pretežnog dijela otvorenog sjevernog, srednjeg i južnog Jadrana, izvršenim ekspedicijom \quad Hvare (1948.), planiranom, organizovanom i vodenom u saradnji 5 njim od strane T. Soljana, tadas̊njeg direktora Instituta za oceanografiju 1 ribarstvo u Splitu.

Zupanovic (1961.) obrađuje biologiju nekih bentoskih riba (Chondrichtyes), koje je dobio koc̄arskim lovinama u srednjem Jadranu. Zupanović (1962.) Je vršio istraživanja bentoskih naselja uz Crnogorsko primorje ($>$ Morsko ribarstvo br. 11 i 12 (1962.) i rukopis), U ovom radu autor, pored ostalog, konstatuje da je na ovome području bentoski riblji

Fond mnogo bogatijł po jedinici površine od onog ostalih naših područja, koja su predmet eksploatacije ovom metodom ribolova. Konfiguracija dna idrugi uslori su povoljni te postoje moguénosti da se ovo područje privede intenzivnijoj eksploataciji.

Zupanovié (1961.) je javrı̉io sistematska istraživanja ihtiobentosn kroz jednogodišnji ciklus u kanalima srednjeg Jadrana u odnosu na ekoloảke faktore sa stanjem i promjenama u naseljima u toku godine.

Crnkovié (1965.) obraduje savrement i praktičnu problematiku ribolova kočom u kanalskom području sjeveroistočnog Jadrana i predlaže niz konkretnih mjera koje treba preduzoti u organizaciji i eksploataciji bentoskih naselja kočarenjem.

Istrazivanja bentoskih populacjia riba do sada nisu nikad vršena u Bokokotorskom zalivu, pa ovaj rad predstavlja prvi pokušaj u tom pravcu. Ostalim oceanografsko-biološkim istraživanjima u ovom Zalivu bavili su se slijedeći autori:

Ercegovic (1938.) obraduic od hidrografskilh podataka one o temperaturi i salínitetu sa četiri pozicije u Bokokotorskom zallvu, kao í probe fitoplanktona. Probe su uzete u novembru 1937. godine.

Gamulin (1938.) je višio tstraz̆ivanja planktonskih kopepoda sa istih pozicija.

Kolosvary (1938.) daje pregled pronadenih Echinodermata u Bokokotorskom zalivu. Sva ova istrazivanja su vrsena u istom periodu (novembar 1937. godine).

Linardic (1940.) pominje nalazišta Fucus virsoides (DON) u Hercegnovskom i Tivatskom zalivu.

Zlokovic (193.9.) je istroživau hidrografske prilike vrela (izvora) u okolini Risna. Ova istraživanja su vsšena na osnovu jednokratno uzetih proba, a ne u odredenom vremenskom ciklusu. Drugih hidrografsko-biolos̉kih istračivanja Bokokotorskog zaliva nije bilo. Stoga, prilazeći ovim prvim istrazivanjima bentoskih ribljih populacija u Bokolsotorskom zaHivu, bilo je potrebno izvesiti i neka pratéca ispitivanja i mjeronja isoja su, ili koja mogu biti, u direktnoj ili u indirektnoj vezi sa stanjem i dinamikom bentoskih naselja riba i jestivih avertebrata,

Interesantho je da nigdje u literaturi nisu dati niti osnovni morfometrijski podaci o ovom Zalivu, kao: njegova ukupna površina i povrsina unutras̆njih zaliva, kojı ga sąinjavaju (kotorski, risanski, tivatski i hercegnovsti). Isto tako ne postoje podaci o volumenu vode, ni ukupnom po zalivima, kao ni po slojevima, stepenicama itd.

S druge strane, ovaj relativno mali Zaliv ($87,334 \mathrm{~km}^{2}$ po nasim ǐraćunavanjima) učestvuje sa $69^{7 \text { a }}$ u ukupnom ulovu morske tibe na Crnogorskom primorju. Dok se sa površine od preko $2.000 \mathrm{~km}^{3}$ otvorenog mora pred obalama Crne Gore ulovi godišnje svega 92 tone ili 31%, dotle se sa svega $87,334 \mathrm{~km}^{2}$ povrsine Bokokotorskog zaliva ulovi 205 tona ili 69\% (jzračunato na osnovu prosjeka ulova od 1958-1962. godine). Ovo se odnosi, uglavnom, na ulov splave ribee. Ovdje svakako treba uzetil
u obzir ekstenzivnost ribolova na otvorenom moru u odnosu na Zaliv, şto je tipična pojava svuda gdje je ribarstvo zaostalo i primitivno. Malinı klasičnim sleutimak nije moguée intenzivno ribariti na otvorenom mori i u većim dubinama. No, i pored toga, ove indilracije govore o dalekn većoj produktivnosti mora u Bokokotorskom zalivu u odnosu na otvoreno more. Ercegović (1938.) ističe bogatstvo fitoplanktonske produkcije u ovom Zalivu.

Motorni leuti i njihova oprema se brojkano povećavaju ì usavršavaju, dok riba kao artikal prehrane postaje sve trazenija, a time i sam ribolov intenzivniji.

Ukoliko ne bi postojala intervencija druśtva u smislu nauene kontrole i zakonskih propisa o ograničenju ulova, vrlo lako i vrlo brzo b. moglo doći do faze njegovog neracionalnog iskonišçavanja prelovom. Nasuprot tome postoji opasnost od neracionalnog iskoriscavanja ovog Zaliva i u slučaju ako su postavljena ograničenja i zabrane preostre, tj. ako nisu u skladu sa potencijalnim moguénostima iskorišćavanja naselja na koja se odnose Takav je, izglede slučaj u ovom Zalivu. Postoji zakonom utvrdena totalna zabrana svakog lova kočom i sliẽnim ribarskim aletima u Citavom Bokokotorskom zalivu. Ova, kao i druge postojece zabrane f ograničenja, doneseni su iskijuclvo prakticisticki bez realnog osnova il anaprijed za ssvaku sigurnosts.

Drukčije nije niti moglo da bude, jer, kako smo napomenulti, de sada nije bilo nikakvih istruzivackih radova, kojima bi se tretiralo stanje i dinamika populacija riba u ovom Zalivu. S druge strane dozvoljen je neograničen ribolov mrežama spotegačamax kroz cijelu godinu, sto možc da bude štetno (a izgleda i jeste) u određenom vremenu i prostoru. U ovom Zalivu se i plava riba lovi iskljuceivo potegačama (a ne plivaricama). te se i time ujedno lovi i najsitnija bentoska riba (kao što je slucaj sa Mullus barbatus, o cemu će biti kasnije govora).

Ograničenja i zabrane su u svakom slučaju ştetni ako se njima u potpunosti izuzimaju iz eksploatacije odgovarajuća područja, odnosno riblja naselja, jer su time ove populacije izvrgnute isključivo prirodnom mortalitetu. Takve zabrane i ograničenja u tom slučaju nemaju elkonomskog opravdanja. Ovdje se jedino mogu izuzeti kao speoijalni slučajevi područja, za koja je utvrđeno da predstavljaju mrijestilista, ali i u ovorn slučaju zabrana se može odnositi samo na vrijeme trajanja mriješcenja. Međutim, ako uzmemo u obzir konkretnu situaciju, tj. totalno nepoznavanje stanja bentoskih naselja (naročito rezidentnih vrsta), a s druge strane ogranićenost prostora, zaklonjenost i male dubine, sto omogućava najintenzivniji ribolov i opasnost od prelova, onda postojeća totalna zabrana predstavlja samo preventivnu mjeru sigurnosti. Drugim riječima, bolje je nikako ne loviti nego preintenzivnim lovom opustositi naselja. Medutim, ovakvim režimom nanosi se sigurna i pčista ekonomska šteta ovoj grani privrede, jer se njime ne dozvoljava korisćéenje potencijalnog viska (prirasta) racionalnim ribolovom primjenom optimalnog intenziteta njegove realizacije. Osim toga dokazano je da se sa intenzitetom ribolova
mijenjaju kvalitativno-kvantitativni odnosi unutar naselja, Mijenjanje ovih odnosa ispitivano je i dokazano izmedu Selachia i Teleostea, Lovostai omogućava brži razvoj Selochia (grabě̌ljivih riba i lošijeg kvaliteta) na račun Teleostea koji bivaju uništavani od ovih. Ovim problemom promjena strukture unutar ribljih naselja teoretski se bavio Volterra (1926.). Praktiěnu primjenu i dokaze dali su D'Ancona (1950., 1955.), Zei (1949.) i Zupanovié (1953., 1959., 1963.). Prema tome, izlaz iz tog scirculus viti-osuse-a u našem slučaju ne nalazi se ni u neograničenoj slobodi ribolova niti u njegovoj totalnoj zabrani, već u potencijalu i dinamici odnosne riblje populacije odgovarajućem naučno fundiranom regulisanju, kojemu treba da prethode i da služe kao osnova nauěna ribarstvenobiolośka istraz̈ivanja, a zatim trajna kvalitativno-kvantitativna kontrola naselja odredenog eksploatisanog područja. Ovo je u našem sluc̉aju prvi pokusaj u toñ pravcu, i to kao jedan medu osnovnim naučnoistraživačkim zadacima Zavoda za biologiju mora u Kotoru, u čijoj režiji su naša istraživanja i zuršena.

Zahvaljujem i ovom prilikom osoblju Zavoda za biologiju mora u Kotoru i posadi istraz̃vačkog broda *Atlante koji su mi u toku rada ukazivali pomoé i saradnju.

Pusebnu zahvalnost dugujem prof. dr Tonku Soljanu, direktoru Bioloskog instituta u Sarajevu, koji je direktno učestvovao u postavljanju programa ovih istrazzivanja, pratio njegovo izvršenje, te svojim bogatim iskustvom i poznavanjem problematilke umnogome doprinio njegovoj realizaciji.

Za pomoc prilikom obrade morfometrije Bokokotorskog zaliva zahvaljujem se prof, geografije Vladimiru Zunjicu, kao i dr Gordanu Karamanu na ustupljeni materijal bentoske zoofaune, te mr Leu Rijavecu za pomoé na terenu i ustupljeni rukopis.

Laboratorijske analize uzoraka taloga dna izvršene su u laboratorijumu Zavoda za pedologiju u Ssrajevu, te se ovom prilikom zahvaljujera saradnicima Zavoda za učinjentu uslugu.

Zahvaljujem se takode upravama Državnog arhiva i Pomorskog muzeja u Kotoru koji su mi stavili na raspolaganje svoje biblioteke i druge podatke.

II SVRHA ISTRAZIVANJA I ZADACI

Iz uvodnog prikaza stanja u Bokokotorskom zalivu proističe i osnovmi cilj ovih istraživanja koji se sastoji u dobivanju sto vjernije slike stanja, distribucije i sezonske dinamike bentoskih populacija riba i jestivih avertebrata u ovom Zalivu, kao i ocjene potenoijalnog optimalnog intenziteta njihove eksploatacije.

Kako čitav żivi svijet, tako i svako riblje naselje posjeduje svojstvo regeneracije (obnavljanja). Ako je ta regeneracija vecia od mortaliteta
tada se naselje kvantitativno povečava \& obratno. Ovo se može izrazití pornatim odnosom:

$$
\mathrm{N}_{1}=\left(\mathrm{N}_{1}+\mathrm{O}\right)+(\mathrm{R}-\mathrm{S}-\mathrm{U}) \ldots \ldots()^{*}
$$

Kod procjene abundancije bentoskih naselja u Bokokolorskom zalivu i aproksimativne ocjene moguceg godišnjeg ulova, slǔ̌ili smo se koeficijentima dobivenim na osnovu elsperimenata. Buckinan (1929) predlaže koeficijent ulova od 0,25 koji je dobiven na osnovu izvrsenih eksperimenata.

Eksperimenti su vršeni markiranjem listova - iveraka Pleuronectes platessa i to njihovim puštunjem u more i ponovnim lovom. Kod procjene moguénosti godišnjeg ulova bentoske ribe u Bokokotorskom zalivu poslužili smo se radom oF $A O$ = - Biology Branch - Fisheries Division. The Present State of Knowledge on Fisheries Resources in the Mediterranean. FAO (56/8-6299., Wp 25/1), gdje se konstatuje da maksimalna mogučnosi ulova ribe može da iznosi do 40% od procijenjenih kolicina (Zupanović 1964.).
${ }^{*} \mathrm{~N}_{2}=$ stanje naselja na poćetku odredene godine.
$\mathrm{N}_{1}=$ stanje niselja u prethodnoj eodini.
$0=$ ležita prirasta ribe regrutiranjem novilh generacija (godiśta).
$\mathrm{R}=$ tez̈nn dobivenn tjelesnim porastom indivdua postojecih generacija a toku godine.
$\mathbf{S}=$ kvantitativni gubici broja individna (izraženi teżinom) koji su pos(jedica raznih uzroka smutnosti (prirodni mortalitet).
$\mathrm{U}=$ godišnji ulov ribe (vještački mortalitet).
Ako pretpostavimo da je u našem sluçaju $\mathrm{U}=\mathrm{O}$ onda ce jednačina (1) izgledati: $\mathrm{N}_{2}=\mathrm{N}_{1}+\mathrm{O}+\mathrm{R}-\mathrm{S} \ldots \ldots$ (2)

Privodenjem određenog područja eksploataclji gornju jednačinu możemo postaviti i cvako:

$$
\begin{equation*}
\mathrm{N}_{2}-\mathrm{N}_{\mathrm{i}}=\mathrm{O}+\mathrm{R}-\mathrm{S}-\mathrm{U} \tag{3}
\end{equation*}
$$

To znači da ce naselje ostati u približno jednakoj i stalnoi sravnotežic ako godišnji ulov (V) bude jednak godisnjem prirastu $(0-\mathrm{R}-\mathrm{S})$, dakle $\mathrm{U}=\mathrm{O}+$
 vrstu posebno, a samo x Uk je promjenjiva vrijednost, protzilazi da of uglavnom (tj. izuzevsi prirodne fluktuacije) stvarno stanje naselja zavisiti samo o stepenu njegove eksploatacije. Održavanje stalne povoljne sravnotē̃e maselja pri optłaualnom ulova \quad Ua je jedan od osnovnih zadataka savremene ribarstvenc biologije. Da bi se odredio optimalni godišnji ulov sUa za određena naselja u odredenon području potrebno je poznavati:

1. Stvarno kvalitativno i kvantitativno stanje mješovitog ribljeg naselja a svim promjenama u toku godine (migracije i dr.).
2. Biologiju svake vrsie u naselju (intenaitet obnove regrutovanjem novih godista, ljelesmi porast, montalitet i dr). Uzorci (probe) kojima se sluzimo ut istraživanju ne reprezontuíu u apsuluthom smislu (polpuno) stvarno stanje nasclja (mreza kojom se wimaja uzorci na određenoj ograničenoj povrşini ne samo da ne ulovi sve vrste na toj površini - naročito pelagiçne, vec vjerovatno niti u njihovom stvarnom mecusobnom relativnom omjera), i
3. Vrijodnosti $\% \mathrm{O}$ \& i • R e iz prethodnih jednacina, koje sur različite za razne

viste.

Pośto je Bokokotorski zaliv do sada bio skoro u potpunosti ne'stražen, to su zadaci postavljeni ovim radom obuhvatili, pored ostalog, i niz pratecih istraz̈ivanja i mjerenja. Osnovnim istraživanjima postavljeni su slijedeći zadaci:

1. Kvalitativna i kvantitativna registrscija nađenih bentoskih riba i jestivih avertebrata, njihova distribucija i frekvencija (apsolutna i relativna gastina) po pojedimm zalivima (kotorski, risanski, tivataki i hercegnovsk.), kao i eventualne promjene u toku godine.
2. Detaljnija obrada ekonomski najinteresantnijih vrsta nadenih u Zalive.
3. Kvantitativna ocjena abundancije bentoskih naselja po jedinici povrs̆ine u zalivima i ukupno.
4. Korelaciori odnosi ubundancije i izvjesnih osnovnih abiotskih i biotskih faktora sredine.
5. Procjona mogućnosti optimalne eksploatacije (vrijeme, način, količina).
6. Utvrđivanje slovnih* odnosno snelovnihe područja, ti. onih na kojima je praktički omogućen ribolov povlačnim mrežama - kočama, odnosno onih na kojuma je takav način ribolova onemogućen zbog nepovoljne konfiguracije dna i drugih mehaničkih prepresa.

Radi cjelovitosti obuhvatanja ovog problema, te dovodenja u vezu pojedinith abiotskih i biotskih faktora sredine sa uslovima kvantitativne i kvalitativne distribucije bentoskih populacija riba i jestivih avertebrata izvršen je niz pratećih istraživanja i mjerenja kao:
a) Detaljno morfometrijsko snimanje čitavog istraživanog područja i njegovo kartiranje.
b) Analiza mehaničkog sastava taloga morskog dna u Bokokotorskom zalivu, te njegov sadržaj na Ca - karbonatu, humusu i organskom $\mathrm{CO}_{2} 1 \mathrm{pH}$.
c) Snimanje morskog dna pomoću ultrazvučnog detektora (sEcno-sounder*-a) u cilju utvrdivanja njegove konfiguracije u Zalivu, a time i praktične mogućnosti ribolova povlačnim mrežama u njegovim pojedinim područjima.
d) Analize osnovnih hidrografskih podataka: temperature 1 satiniteta na pozicijama lova kroz jednogodišnj̄i ciklus.
e) Osnovni podaci o prozirnosti mora Secchievom pločom i prilivu slatke vode.
f) Orijentacione kvalitativno-kvantitativne analize bentoske faune dna (endofaune), kao jednog od bitnih faktora kvalitativne i kvantitativne distribucije bentoskih ribljih populacija.

III MATERIJAL I METODIKA

Da bi se mogle uzimati probe, odnosno izvršavati lovine pomoću povlačne mreže - koče - potrebno je da teren, tj, morsko dno, bude ravno i bez mehaničkih prepraka (podvodni grebeni, hridi, depresije i dr.). Posto je teren (dno) u ovom Zalivu bio nepoznat, jer se nikada u njemu rije kočarilo ni prakticki ni eksperimentalno, niti vrsila ikakva druga ispitivanja u tu svrhu, to je bilo potrebno prije svega pronacii sstaze. (pozicije) na kojima je tehnicki omogućeno uzimanje proba, tj. vřenje lovina kočom. Ovo ispitivanje terena izvršili smo prethodnim istraživanjima pomoću ulirazvučnog detektora $>$ Echosounder - a tipa $>$ Simrad $=513-2$, kao i eksperimentalnim lovinama. Nakon owih prethodnih ispitivanju fiksirano je 8 stalnih sěistihe pozicija, na kojima su uzimane probe u toku godine. Nastojalo se da lovne staze, odnosno vrijeme poviac̃enja bude uvijek isto (1 sat) radi lakṡeg izračunevanja ulova po jedinici napora. Medutim, to nije bilo uvijek moguce, negdje zbog kratkoce staze a negdje zbog mehaničkih prepreka na samom dnu. (SI, 1 i 2).

Lovine su izvršavane pomoéu istraživac̈kog motornog broda »Atlantz Zavoda za biologiju mora u Kotoru, Brzina broda za vrijeme povlačenja mreže (lova) iznosila je 2 Nm .

Kod kvantitativne obrade sakupljenog materijala, odnosno kompariranja ulova između pojedinih područja, morali smo ulove sa nekih

EHOGRAM - 1 KOTORSKY ZALN (KOTORBAY)

EHOCRAM-? KOTORSKI ZALIV (KOTOR BAY)

$$
7.3
$$

EHOCRAM - 4 RISANSKI ZALNV (RISAN GAY)

EHOGRAM - 5 TIVATSKI ZALNV (TAVAR BAV)

pozicija kočom, (staza povlačenja) preračunati na normalne, tj. na one od jednog sata (jedinice napora). Ovo se odnosi na pozicije $3,4,7$ i 8 , na kojima zbog mehaničkih prepreka na dnu, odnosno kratkoce same staze, nije bilo moguće povlačiti mrežu čitav sat već 50 minuta.

Kod kvantitativno-komparativne obrade i obračunavanja ulova po jedinici napora svakoj lovini sa navedenog podrucja, pored stvarnog ulova, a zagradama je dat i hipotetski ulov za deset minuta (kom i kg), koji bi se postigao ako bi mreža bila povlačena 60 minuta. Ovo je učinjeno pod pretpostavkom da mreža kroz čitavo vrijeme jednako lovi. Eksperimentima je mecutim, dokazano da to nije sasvim tačno (Zei 1938., Bückman 1929.), ti. da se ulov ne povećava sasvim proporcionalno sa vremenom povlačenja. Prema tome, i u našem slučaju mogucée su manje greske kod komparativnîh preraćunavanja ulova skraśenih poteza na dužinu normalnih, tj, na jedinicu napora od 1 h pri njihovom upoređivanju sa ostalim, što nije bilo moguce izbjeći.

Isto tako, zbog tehničkih razloga sve pozicije nisu zastupane jednakim brojem lovina.

Uzord su uzimani pomoču povlačne mreže - koče - domačeg tipa izrađene od pamućnog prediva (SL. 3),

SHKCA ARE 3

Dimenzije osnovnih djelova mreze su slijedece:

- dakina sabirnog konopa *strugarae od dasaka sirilica do krila mreże 45 m
- duzina konopa gornjaka (plutnja) $14+14$. 28 m
- duzina konopa donjaka (olovnja) $15+15$. $\quad 30 \mathrm{~m}$
- duěina krila mreže $13,5 \mathrm{~m}$
- dư̌ina mrežinc vreće 16 m
- dǔ̌ina podanka 5 m
- ukupna dužina mreže 30 m
- veličina oka u krilima 100 mm
- velicina oka u prvoj polovini mrez̃e 30 mm
- veličina oka u drugoj polovini mreže , . . 25 mm

Sakupljeni materijal bentoskih riba i jestivih avertebrata obradivan je neposredno nakon ulova u svježem stanju. Pored proba ihtiobentosa i jestivih avertebrata četiri puta godis̆nje uzimane su probe zoobentosa pomoću Petersenovog grabila od $1 / 5$ kvadratnog metra površine otvora. Istovremeno uzimani su podaci o temperaturi, kao i uzorci mora za analizu saliniteta. Temperatura je mjerena obrtljivim termometrom (Negretti i Zambra - London), a uzorei morske vode Nansenovim crpcen.

U citavom Zalivu uzeti su uzorci morskog dna radi analiza mehaničkog sastava sadržaja $\mathrm{CaCO} \mathrm{CO}_{1} \mathrm{CO}_{2}$ (Humusa).

Ehosaunderom je izvršeno snimanje morskog dna na svim ispitivanim podruéjima i izvan njih u Zalivu u cilju utvrdivanja moguinosti ribolova povlačnim mrežama (S1. 6).

Mjerenja za dobivanje morfometrijskih podataka izvršena su pomoću planimetra, a koordinate tačaka na terenu pomoću sekstanta.

Korelacioni odnosi između pojedinih svojstava (faktora) izračunati su po formuli:

$$
\mathrm{r}=\frac{\Sigma \mathrm{Vx} V \mathrm{y}-\mathrm{n} M \mathrm{M} M \mathrm{y}}{\mathrm{n} \sigma \mathrm{x} \sigma \mathrm{y}}
$$

Srednja greška korelacionog koeficijenta:

$$
\mathrm{m}_{\mathrm{t}}=\frac{1-\mathrm{r}^{2}}{\sqrt{\pi}}
$$

Vjerovatna greška - Error probabilis - korelacionog koeficijenta:

$$
\text { E. } P_{t \mathrm{t}}=06745 \frac{1-\mathrm{r}^{2}}{\sqrt{n}}
$$

IV ABIOTSKE I BIOTSKE OSOBINE BIOTOPA

1. Bokokotorski zaliv: Postanak i morfometrijski podaci

Savicki i Cvijić (1924.) postanak Bokokotorskog zaliva pripisuju fluvijalnoj eroziji. Prema Cvijiću najvažniji procesi koji određuju oblike ovog Zaliva vezani su za rad ledenjaka u periodu Virmske glacijacije Današnji Bokokotorski zaliv predstavlja nekoliko potopljenih prosirenja it dolina izrađenih fluvijalnom erozzom. Crijić nadalje tumac̆i da se spus̃ tanje Boke desilo u Pliocenu, ali se i kasnije nastavilo duž. starth tektonskih pravaca. Nasuprot navedenim autorima Bourcart (1926.) iskljuc̆uje hipotezu of fluvijalnom porijeklu, te, odbacujuci svaki udio rijecne erozije, postanak Boke Kotorske tumači isključivo lektonskim procesima. Millojeví́ (1953.) kaže: ${ }^{\text {sReljef }}$ Boke Kotorske je predisponiran tektonski, ali je izraden Iluvijalnom erozijom.s

Rezultati naših istraživanja geomorfologije, odnosno konfiguracije morskog dna Bokokotorskog zaliva, kao i granulomelrijskog fizickkohemijskog sastava sedimenata govore u prilog tumaceenju of fluvijalnom porijeklu.

Bokokotorski zaliv se nalazi na jugoistočnom području Dinarskog primorja i predstavlja najrazuđeniju obalu u ovom njegovom dijelu.

Geografski položaj ovog Zaliva odreden je krajnjim tacckama:
$\begin{array}{llll}\text { - prema sjeveru } & 42^{\prime} & 31^{\prime} & 00 \\ \text { - prema jugu } & 42^{\prime} & 23^{\prime} & 32^{\prime \prime} \\ \text { - prema istoku } & 18^{\prime \prime} & 46^{\prime} & 32^{\prime \prime} \\ \text { - prema zapadu } & 18^{\prime \prime} & 30^{\prime} & 29^{\prime \prime}\end{array}$

Bokokotorski zaliv sačinjavaju cetiri manja zaliva, i to: kotorski, risanski, tivatski i hercegnovski.

U slijedecim tabelama donosimo morfometrijske podatke za Bokokotorski zaliv i unutrašnje zaluve koji ga sačinjavaju.

TABELA br. 1
Table No 1

MORFOMETRIJSKI PODACI BOKOKOTORSKOG ZALIVA Morphometric data of Boka Kotorska bay

1. Ukupna površina

Total surface
2. Ukupna zapremina

Total volunue
3. Maksimalna dubina Max. depth
4. Srednja dubina Mean depth
5. Dư̌ina zaliva Lenght of the bay
6. Dužina obale Coast line lenght
7. Razuđicnost obale Coast sinuosity
8. Sirina ulaza u Zaliv Width of the bay's mouth
$87,334 \mathrm{~km}^{3}$
$2.412,306,000 \mathrm{~km}^{1}$
60 m
$27,3 \mathrm{~m}$
$23,125 \mathrm{~km}$
105, 7 km

$$
\begin{aligned}
\underset{(\text { cocflicient })}{\text { Kocficijent }}= & 3,07 \\
& 2,950 \mathrm{~m}
\end{aligned}
$$

TABELA. br. 2
Table Ne 2

ZAPREVINA BOKOKOTORSKOG ZALIVA PO DUBINSKIM STEPENICAMA I SLOJEVIMA

Volume of B. K. bay of depth steps and layers

Izobata	Zapremina po Isobaths	Stepenicama $u \mathrm{~m}^{\pi}$ Volume depth steps m^{3}	$\%$	Zapremina po slujevima u m^{3} Volume layres $\left(\mathrm{m}^{2}\right)$

TABELA br. 3 Table No 3

POVRŚINA BOKOKOTORSKOG ZALIVA PO IZOBATAMA Surface of B. K. bay in isobaths

1 zobat a Isobaths	km^{2}	$\%$
$0-10$	10,194	11,7
$10-20$	13,442	15,4
$20-30$	18,907	26,6
$30-40$	36,308	41,6
$40-50$	7,195	8,2
-50	1,288	1,5
U K U P N O:	87,334	100,0
Total:		

	Kotorski zaliv Kotor bay	$\%$	Risanski zaliv Risan bay	$\%$	Tivatski zaliv Tivat bay	$\%$	Hercegnovski zaliv
Hercegnovi bay							

[^1]$\frac{\text { TABELA }}{\text { Table }} \mathbf{~ N o} 5$

ZAPREMINA PO DUBINSKIM SLOJEVIMA UNUTRASNJIH ZALIVA Volume of depth layers of the inside bays								
Izobate dub. umet. Isob. depth (m.)	Kotorski zaliv Kotor bay	\%	Risanski zaliv Risan bay	\%	Tivatski zaliv Tivat bay	\%	Hercegnovski zaliv Hercegnovi bay	\%
$0-10$	157,285.000	36.40	81,535,000	39.7	322,921.000	36,8	269,835.000	29,6
10-20	136,804.000	31.39	69,294.000	33,6	270,489,000	31,0	236,197,000	26,0
20-30	102,323.000	23,00	45,208.000	21.9	199,935.000	23,0	202,746.000	25,0
30-40	41,601.000	9.00	9,921.000	4,8	83,165.000	9.0	130,629.000	14,0
40-50	1,040.000	0,20	>-	-	2,201.000	0,2	44,853.000	3,0
$>+50$	53.000	0,01	-	-	-	-	4,271,000	0,4
UKUPNO: Total:	439,106,000	100%	205,958.000	100\%	878,711.000	100\%	888,531.000	100%

TABELA br. 6
Table № 6
ZAPREMINA PO DUBINSKIM STEPENICAMA UNUTRASNJIH ZALIVA
Volume in depth steps of inside

Izobate dub. u met. Isob. depth (m.)	Kotorski zaliv Kotor bay	\%	Risanski zaliv Risan bay	\%	Tivatski zalíy Tivat bay	\%	Hercegnovski zaliv Hercegnov bay	\%
0-10	'7,039.000	1,1	3,599,000	1.7	22,069.000	2,0	18,458.000	2,0
10-20	40,319.000	9,0	25,915,000	12,4	90,905.000	10,0	45,306.000	5,0
20-30	105,197.000	23,7	87,183.000	42,3	200,824,000	23,0	91,472,000	12.0
30-40	277,751.000	63,4	89,261.000	43,6	535,230.000	62,0	375,312,000	42,0
40-50	7,920.000	2,6	-	-	29,683.000	3,0	287,658.000	32,0
>50	880.000	0.2	-	-	-	-	70,325.000	7,0
UKUPNO: Total:	439,106,000	100\%	205,958.000	100\%	878,711.000	100\%	888,531.000	100\%

TABELA br. 7
Table № 7
POVRŠINE PO IZOBATAMA UNUTRAS̄NJIH ZALTVA © $\mathrm{km}^{2 *}$ Surfaces in isobaths of the inside bays (km^{2})

Izobate Isobaths	Kotorski Kotur bay	\%	Risanski Risan bay	\%	Tivatski Tivat bay	\%	Hercegnovski Hercegnovi bay	\%
0-10	1,393	8,50	0,716	9,0	4,411	12,8	3,674	12,8
10-20	2,661	16,40	1,718	21,5	6,057	17,6	3.006	10,5
20-30	4,165	27,51	3,072	38,3	8,028	23,4	3,642	12,7
30-40	7,853	48,31	2,499	31,2	15,284	44.3	10,672	37,3
$40-50$	0,174	1,07	-	-	0,659	19	6,362	22,3
>50	0,016	0,01	-	-	-	-	1.272	4,4
UKUPNO: Total:	16,262	100,0	8,005	100,0	34,439	100,0	28,628	100, 0

" nisu uzete u obzir površine otoka:
Stradioti - 0,36875 km^{4}
Sv. Đorđe - 0,07500 km^{2}
Mjerenja i izracursvania ievrsili smo na slijedect nacin:

- dužine obalnih lintija pomoću kurvimetra:
- izračunnvanje povisina pomoću planimetra.

Radi veće tačnosti posebno su iztačunate povrsine po zalivima, čilavog Zaliva i izmeđtu ieobata.

Iz dobiveniñ rezultata urimali smo srednje vrijednosti.

- kneficijent razuâenosti izračunat je po formuli:
$\mathrm{K}=\frac{1}{\mathrm{I}_{4}}$ gdje je sle duáina obalne linije, a h dužina Zaliva.
- prosječne şirine izračunate su po formuli:
$\frac{P}{1}$, gdje je $\sim \mathbf{P}$ povrsina Zattiv, a ste cuzina vobale.
- srednje dubine izračunate su iz odnosa
$\frac{\mathrm{V}}{\mathrm{P}}$ gdje je $s \mathrm{Ve}$ volumen, a sPe purrsina Zaliva

2. Fizicko-hemijske osobine taloga dna

Mrogi autori su dokazivali odredenu pevezanost bentoskih životinjskih zajedrica sa fizičko-hemijskim osobinama dna. Kao faktor zavisnosti preteżno je uziman mehanički sastav (tekstura) i ostala svojstva dina, a manje druge larakferistike. Peterson (1911., 1915.) ističe fiziēki karakter dna kao bitan faktor distribucije pridnenih životinja. Jones (1950.) i Skorson (1957.) pridaju veliki značaj povezanosti izmeflu sastava dna i formiranja bentoskih zajednica. Bas (1957., 1959.) smatra da je distribucija vista ribe, zavisna od topografije morskog dna.

Prva sistematska istraživanja geoloških svojstava marinskih sedimenata vrìila su se za vrijeme jugosiavenske ekspedicije $>$ Hvar Instituta za oceanografiju i ribarstvo u Splitu 1948/1949. Rezultati ovih istrażivanja daju prvu orijentacionu sliku a mehaničkom sastavu marinskih sedimenata otvorenog Jadrana (Monovié 1951,).

Ranija parcijalna istraživanja vršena su u Kvarnerskom zalivu (Torenz 1929.) zatim u Trščanskom zalivu i u zapadno) obali Istre (Mancini 1929.). Područje otvorenog Jadrana je također dobrim dijelom obradeno na osnovu pomenutih proba uzetih na elspediciji oHvara (Morović 1951.), posebno južnog Jadrana (Kirinčíl i Lepelié 1955.), kanala srednjeg Jadrana (Alfurevié 1956 i 1960; Zupanovic 1961.), te Mljetskog jezora (Vuletić 1962.).

Ova istraživanja se ograničavaju uglavnom na mehanickki sastav, क गुeđe i na sadržaj CaCO (Vuletič, Allirevie).

Sistematsko geoloskko-moriološko ispitivanje marinskih sedimenata i mjihovo kartiranje (tekstura sedimenata, konfiguracija, hemizam) predstavlja, pored ostalog, i jednu od osnova za veću i racionalniju eksploataciju mora uopste.

U Bokokotorskom zalivu nisu do sada vršena nikakva istraživanja sedimenata, pa ove nase analize predstavljaju prvi takav korak na tom području.

Na 21 Iokalitetus u Zalivu uzeti su uzorci dna pomoéu Petersenovog grabila (bagera). Da bi se dobila kompletnija slika sestava taloga dna, uzete su probe i izvršene analize 1 izvan područja na kojima su uzimane probe bentoskih ribljin naselja (SL 4). Iz povišinskog dijela svake probe uzet je uzorak od cea 500 gr . Prema tome sve analize se odnose na površinski dio taloga.

Pored određivanja mehaničkog sastava izvrṡene su analize za odreGivanje karbonata, organskog $\mathrm{CO}:$ i pH ,

Metodika rada: 1. Mehanički sastav odreden je pipet metodom prema Robinsonu uz hemijsku preparaciju sa natrijevim oksalatom. Količini uzorka, kojoj odgovara 25 gr apsulutno suhog uzorka, dodano je kod preparacije za mehaničku analızu $500 \mathrm{~cm}^{2}$ destilirane vode i 10 cm 0,5 n $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}+4$ te ostavljeno da stoji preko noći zbog raskvasavanja. Poslije toga uzorci su muckani 6 sali u Vagnerovoj muékalici sa 40 okretaja u minuti. Zatim je dodano destilirane vode do marke na boci od 1400 ml . Sadržaj boce je promućkan i ostavljen na sedimentiranje čestica manjih od $0,002 \mathrm{~mm}$, manjih od $0,01 \mathrm{~mm}$, od $0,01-0,05 \mathrm{~mm}$, a iz razlike su određene čestice veličine $0,05-2,0 \mathrm{~mm}$.
2. Odredivanje karbonata u formi CaCO_{3} u čitavom uzorku izvršeno je volumetrijski sa kalcimetrom po Scheibler Ditrich-Muonke-u.
3. Određivanje organskog CO_{2} izvršeno je olksidimetrijski prema Kotzmanu sa m/10 KMnO4 i $n / 10$ oksalnom kiselinom. Rezultati su proračunati i na sadržinu humusa.
4. Odredivanje aktuelne reakcije izvrŠeno je elektrometrijskim mjerenjem pH vrijednosti u suspenziji uzorka sa destiliranom vodom u omjeru $1: 2,5$ sa staklenom elektrodom.

U tabelama dajemo rezultate izvrŠenih analiza.

TABELA br 8
Table 8

MEHANIČKI SASTAV TALOGA DNA U BOKOKOTORSKOM ZALIVL Plysical composition of sea - bottom sediments in B. K. bay

Lokalitet locality	Dubina mora u m depth (m)	Postotni sadrhaj ćestica lla s promjerom u mm constituents of particles per cent diam. (mm.)			Teksturna oznaka po Gračanima Tecture designation by Gračanin
		$2-0.05$	0,05-0,01	<001	
1	22	0,32	16,48	83,20	glina
2	29	1,80	14,60	83,60	glina
3	32	2,40	15,00	85,60	glina
4	34	0,82	13,82	85,36	glina \quad clay
5	38	6,20	11,40	82,40	glina
6	35	1,60	12,04	36,36	glina
7	31	1,60	12,20	86,20	glina
8	19	32,00	16,20	51,80	pjeskov. glina-sandy clay
9	38	5,60	11,40	83,00	glina-clsy
10	35	43,80	14,00	42,20	glin. Hlovaċa-clayey silt
11	25	7,80	16,72	75,48	clina
12	20	0,00	1020	89,80	glina
13	28	80,00	2,36	17,64	glin. ilov. pjeskulja clayey silty sand
14	34	0,96	10,72	89,32	glina
15	36	10,20	18,64	71,16	glina clay
16	36	0,80	16,40	82,80	glima
17	46	70,60	3,72	25,68	glin. pjeskulja-clayey sand
18	8,5	11.52	33,68	54,80	flovasts glina-silty clay
19	49	20,80	15,44	63,76	glina - clay
20	37	90,00	2,84	7,16	pljeskulje -sand
21	72	64,20	3,60	32,20	glin. pjeikulja-clayey sard

TABELA br. 9
Table 9
SADRŽAJ CaCOs U ISPITIVANIN UZORCIMA U\%
Content of CaCO ; in samples per cent

Lokalitet locality	U ćest cama uzorka sa promjerom u mm in particl-s of samples diam (mm)				cjelokupnog uzorka total samples
	$<0,002$		< 0,01		
	a 100 gr				
	Frakcije fractions	Uzorka sample	Frakcije fractions	Uzorka sample	
1	3,07	0,75	9,27	7,71	13,25
2	5,01	1.21	9.04	7,55	10,13
3	13,32	1.21	7,87	6,50	9,36
4	5,52	1.51	6,55	5,59	8,96
5	9, $/ 9$.	151	6,61	5,44	9,36
6	3,50	0,91	5,25	4,53	7,79
7	4,55	180	5,74	4,94	7,64
8	5,18	1.04	9,56	4,95	11,11
9	4,91	1.57	6,32	5,24	7,64
10	4,62	0,75	5,69	2,40	21,79
11	4,07	1,04	5,96	4,49	7.64
12	459	1,34	5,18	4,65	7,64
13	10.94	1.05	17,01	3,00	[33,06
14	5,18	1.47	3,36	3,00	7,64
15	2.41	0,62	7,40	5,26	10,70
16	2,67	0,75	6,54	5,41	8.74
17	390	0,45	9,96	2,56	19,00
18	4,65	6,75	12,36	6,77	18,24
19	5.91	1.50	9,91	5,31	23,54
20	16,12	4,51	12,60	9,02	29,80
21	4,53	0,75	9,35	3,01	20,90

TABELA br. 10
Table 10
REZULTATI ANALIZE REAKCIJE TALOGA DNA U H2O I n-KC1, SADRZ̃INE ORGANSKOG CO2 I HIGROSKUPSKE VLAGE Results of analysis of bottom sediments reaction in H 2 O and $n-\mathrm{KCl}$, content of organic CO z and hygroscopicity

Lokalitet Jocality	Reakcja pH ureaction pH in $\mathrm{H}=\mathrm{O}$		Sadrżina content		Higroskopska vlaga u \% hygroscopicity
	$\mathrm{H}=\mathrm{O}$	n-KC1	Humusa $\%$ humus	$\begin{gathered} \text { organskog } \\ \mathrm{CO}_{2} \\ \text { organic } \end{gathered}$	
1	8,50	8,77	-	-	7,25
2	8.40	8,12	-	-	10,66
3	8,32	8,09	-	-	12,24
4	8,40	8,20	2,22	4,72	8.29
5	8,58	8,40	-	-	8,43
6	8,37	8,10	-	-	10,64
7	8.40	8,12	-	-	10,16
8	8,50	8,25	2,16	4,60	5.20
9	8,45	8,22	-	-	6,06
10	8,70	8,37	-	-	3,60
11	8,55	8,20	-	-	4,86
12	8,40	8,13	1,92	4,09	7,33
13	8,80	8,50	-	-	1,84
14	8,43	8,15	1,96	4,17	7,98
15	8,68	8.32	-	-	6.49
16	8,58	8,24	1.95	4,15	6,61
17	8,80	8,39	-	-	2,00
18	8,59	8,16	-	-	3,15
19	8,63	8,91	-	-	5,35
20	8,75	8.55	-	-	0,81
21	8,73	8,31	-	-	2,85

3. Istraz̄ivanje područja za lov povlačnım mrežama u Bokokotorskom zalivu

Ribolov pomocu povlučne mreze-loむe (vuça-strawlz), kojom su vrEena ispisivanja bentoskih naselja u Bokokotorskom zalivu, vezain je iskljuecivo ta morsko dno. Zlog toga je ribolov ovalevim mrežama omoguEen jedino na ravnim i mekanim terenima (stazama).

Posto nije bila poznifa konfiguracija (reljef) morskog dna a ovom Zalivu, to je bilo potrebno ispitati i utvoditi područja na kojima je takav ribolov omogucen. Ovo smo izvršili pomoću dvije metode:

Prva se sastojala u snimanju reljefa morskog dra pomocu ultrarvuẽnog detektora, a druga eksperimentalnim loviname. Dobiveni ehogrami (prikazani ehogramima od I do XII - SL. 5) predsfavljaju predjele sa podmorsikim grebenima i dopresijama, na kojima je onemogucen svaki ribolov povlačnim mrežama, Slična morfometrijska istrażivanja marinskih sedimenata vrşena su jedino djolimiơno u srednjem Jadranu (Grubisić i Gospodnett 1955., Alfirevic 1958 i 1960.). Ehogrami 1-8 (SI, 2) predstavljaju snimke pozicija sa ravnim dnom, na kojima su vršena ribarstvenobiološka istraživanja kočom. Svaki pokušaj ribolova bjlo kojom povlačnom mrežom na područjima predstavljenim ehogramima 1 - XII (Sl. 5) osuđen je na neuspjeh i osjetnu materijalnu štetu, koja bi se sastojala u kidanju (paranju) ili u gubitku čitave mreže.

S druge strane, baš ovakva podruçja sa podvodrim grebenima, hridima, depresijama 1 čvrstom konzistencijom predstavijoju obično najproduktivnija mjesta za sbijeluı ribu tj, onu pretežno boljeg kvaliteta. Ribolov na ovakvim podruçjima omogućen je drugim ribolovnim sredstvima (strukovi, vrše, mreže stajacice i sl.). Prema tome, otkrivanje i filksiranje takvih položaja pokazuje praktic̆nom ribolovu povlac̆nim mrez̃ama područja na kojima nije moguće koc̆ariti, a u isto vrijeme ukazuje na moguénost bogatog lova drugim ribolovnim alatima.

Ehogrami se ostalih područja Bokokotorskog zaliva pokazuju manje--više ravan teren, ali to joş uvijele i u svakom slucaiu ne znaci da je ribolov kočom sasvim siguran i bez opasnosti od materijalne śtete. Iskustvo nam je, naime, pokazalo da smo u više navrata imali manja ili veça ošteċenja na mreži loveci na nekim područjjima čiji ehogrami pokazuju manje--više ravno dno. Ovo posebno važi za jedan dio Hercegnovskog i Tivatskog zaliva. Ovdje se, vjerovatno, radi o manjim żeljeznim i drugim oštrim predmetima koji su tokom godina i za vrijeme rata bacani u more i koji paraju mrežu kad ona prolazi po ntima. Ovi predmeti su djelimično ili sasvim pokriveni muljem, te ih ehosaunder ne registrira, a dovoljno su oštri i jaki da naprave oštećenja na mreži. Isto tako jmali smo slučajeva da se nakon više uzastopnih uspjelih lovina mreža risparala na skistome terenu.

EHOCRAM - P-IN-IN RISANSKY ZALN RISAN BAY)

EHOCRAM-D-V TIWATSNI ZALIV (TWAT QAY) p-に

EHOCRAM - P-V THVATSKZ ZALUN (ZIVAT BAY)

EHOGRAM $=P-V I$
H. NOVSKI ZALTV
(H. NOM BAK)

Zbog ovakve situacije bili smo primorani izvršavati eksperimentalne lovine i na područjima čjji su ehogrami pokazivali ravno dno.

Na osnovu tih eksperimentalnih lovina i snimanja pomocu ehosaundera na Sl. 2 dajemo orijentacioni pregled Bokokotorskog zaliva s ofzirom na tehnićku moguénost praktičnog ribolova povlačnim mrežama (SI. 6).

U tom smislu čitavi Zaliv smo podijelili na tri zone j to:
I zona, koja obuhvata podruêja sa ravnim dnom (ehogrami $1-8 \mathrm{Sl}$. 2), na kojoj su se i eksperimentalne lovine pokazale uspjesnum i bez oštecenja na mrežama (osim zuzetno).

If zona obuhvata područja ciji ehogrami pokazuju, također, relativno ravno dno, ali da kojima smo imali povremeno manja ili veca ostecenja na mrezamn (vjerovatno zbog manjih ostrih predmeta koji po neki put zakače mrežu na manje otpornim djclovima). U ovoj zoni je moguče kočarenje, ali je vezano sa izvjesnim rizikom. Za ribolov ul ovoj zoni trebalo bi konstruisati odgovarajuću povlačnu mrežu, koja bì imala specijalna pojačanja na prednjem donjem dijelu otvora, te čvršći čitavi donji dio.

III zona odnosi se na područja, na kojima je onemogućen svaki ribolov povlačnim mrežama zbog neravng dna (depres.je, grebeni) i drugih mehanickih preprela.
4. Sezonska kolebanja temperature, saliniteta i prozirnosti vode u Bokokotorskom zalivu

Mnogi istrazzivaǔi pridaju veliku važnost uttcaju hidrografskih saktora na formiranje, distribuciju i sezonsku dinamiku bentoskih zajednica.

Günther (1945., 1957.) je istraživan distribuciju ribljih naselju ut odnost na salinitet i temperaturu. Po misljenju autora temperatura je aticajniji faktor od saliniteta. Edwards (1059.) dokazuje da su opsti hidrografski uslovi odluéniji u određivanju karaktera bentoskih zajednica od sastava i svojstva dna. Hart (1947.) je dokazeo da neke bentoske ribe vrse sezonske migracije, ljeti prema kopnu, a zimi prema dubljim podrucjima. Ova pomjeranja dovodi u vezu sa promjenama hidrografskih prilika sredine itd.

Hidrografska istražvanja u Jadranu vršilo je više autora, kao Wolf i Luksch (1837.); Grund (1912).) Kesslitz (1915.): Picotti i Vatova (1942.); De Marchi (1920.); Vatova (1921. 1924.); Ercegović (1934., 1935., 1938.); Buljan (1949., 1952., 1953., 1956., 1955., 1957., 3958.$)$, Buljan 1 Marinković (1956.); Zore i Zupan (1960.) i dr.

Za Bokokotorski zaliv postoje jedini podaci o temperaturi i salinitetu koje je dao Ercegovié (1938.) sa jednokratno uzetih proba u mjesecu novembru 1937. godine. Jednu od karakteristika Bokokotorskog valiva predstavljaju veoma obimni prilivi izvorskih kopnenih voda, koje osjetno utiču na hidrografske prilike morske vode Zaliva. Pored submarinskih izvora (naročito u Kotorskom, Risanskom i Tivatskom zalivu) duž ̧itave obale nalaze se brojna vrela i potoci. Zlokovič (1939.) daje podalke o jednom dijelu izvora is Risanskum zalivu. Na żalost, ne raspolażemo podacima o kapacitetima, periodic̀nosti i hidrografskim svojstvima ostalih izvora i vrela. Jedan dio ovih izvora nije aktivan kroz çtavu godinu ili je u ljetnim mjesecima njihov kapacitet sveden na minimum, sto ima za posljedicu velika sezonska kolebanja temperature i saliniteta. Osim toga, poznata je činjenica da ovi predjeli spadaju u područja sa maksimalnim godišnjim atmosferskim talozima (Crkvice iznad Risna sa cca 5.000 mm su na prvom mjestu u Evropi po količini godis̃njih oborina). Na taj način
se u toku zimskog perioda ogromne mase slatke vode slivaju u ovaj relativna mali i zatvoreni Zaliv. Ovakvi specifićni hidrografski uslovi morali su se odraziti i na formiranje biocenoza uopšte, na distribuciju i sezonska pomjeranja i sl.

Međutim, pošto se u našem sluc̆aju radi o naseljima dna, to je potrebno istaci da su ovi uticaji u donjim slojevima mora znatno slabiji od uticaja u gornjim slojevima (SL. 7). Tako i prema podacima Ercegovića, dok je termperaturni gradijent na površini iznosio $4,82^{\circ} \mathrm{C}$ (od $13,50^{\circ}$ $18,32^{\circ} \mathrm{C}$), dotle je u isto vrijeme na dubini od 30 metara iznosio svega $0,48^{\circ} \mathrm{C}$ (od $18,80^{\circ}-19,28^{\circ} \mathrm{C}$). Gradijent saliniteta na površini iznosi $22,87 \%^{\circ}$, a na 30 metara dubine svega 0,72 (od $36,98 \% 0^{\circ}$ do $37,72 \% 6^{\circ}$). Podact se odnose na novembar 1938. trodine. (Za komparaciju bio je uzet Kotorski zaliv i Rt Oštra). U našem slučaju površinski temperaturni gradijent za isti mjesec iznosi 1,7, a na cca 30 metara je 1, 0° C. Određivanje saliniteta izvršeno je po Mohr-ovoj metodi titriranjem pomoću Ag NOz i $\mathrm{Kz} \mathrm{CrO}_{4}$, kao indikatora, i Knudsenovom normalnom vodom. U tabeli 11 dajemo podathe temperature i saliniteta uzete u toku naših istraživanja.

Prozirnost mora ispitivana je pomoću Secchieve ploče promjera $0,5 \mathrm{~m}$ samo u mjesecima junu i julu 1964. godine.

Prosječna prozirnost u ova dva mjeseca po pozicijama iznosila je u metrima:

$\mathrm{P}-1$	$\mathrm{P}-2$	$\mathrm{P}-3$	$\mathrm{P}-4$	$\mathrm{P}-5$	$\mathrm{P}-6$	$\mathrm{P}-7$	$\mathrm{P}-8$
10,8	12,5	12,0	16,5	17,0	11,0	15,5 Prosjek 13 m	

Kao što se iz ovih podataka vidi prozirnost mora se uglavnom povećava od Kotorskog zaliva prema otvorenom moru sa izuzetkom podatka dohivenog na pozicijl $7(11,0 \mathrm{~m})$. Redi komparacije đonosimo podatke o prozirnosti mora 4 zalivima sjevernog Jadrana po Kremaru (1926.).

Kvarnerić	Planinski kanal	Crikvenički k.	Senjska vrata
21,5	17,9	13,0	17,0
Riječki zaliv	Vela vrata		Prosječna vrijednost
20,6	19,9		18,3

Prema navedenim podacima proizilazi da je prozirnost mora u Bokokotorskom zalivu osjetno manja od prozirnosti u navedenirn područjima sjevernog Jadrana.

Podaci dobiveni Secchievom pločom u Kaštelanskom zalivu (ZoreZupan 1960. godine) iznosili'su 4,5 do 15 m .

Prosječna prozirnost otvorenog mora ispred Bokokotorskog zaliva za mjesec juli utvrdill smo da iznosi 23 m .

Poznato je da prozurnost mora, pored faktora temperature i saliniteta, zavisi narokito od suspendovanil cestica tla i od bogatstva lebdećm planktonskim organizmima, Koliko su koji od navedenih faktora uticali na smanjenu prozirnost mora u Bolcokotorskom zalivu u periodu mjerenja, ne možemo rećf, jer nisu vršena odgovarajuća ispitivanja, što nije bís
cilj naših istraživanja. Możemo samo pretpostavljati da je jedan veci dio smanjene prozirnostii posljedica relativnog bogatstya lebded́h mikroorganizama, a manji pasljedica anorganskih suspenzija. Podaci su uzimani po lijepom vremenu (bez kiše).

Površinski maksimum temperature ($\mathrm{t}^{0} \mathrm{M}^{0}$) javija se u Kotorskom zalivu u avgustu i iznosi $2,10^{\circ} \mathrm{C}$. U Risanskom, Tivatskom i Hercegnovskom zalivu bio je u junu i iznosio je $24,5^{\circ}, 25,5^{\circ}$ i $25,5^{\circ}$ C. Povrsinski maksimum temperature u Kotorskom zalivu bio je tek u avgustu (za razliku od ostala tri) vjerovatno zbog toga što je ovaj Zaliv pod najslabijim uticajem otvorenog mora, a u isto vrijeme pod direktnim uticajem priliva slatkih voda, cija je temperatura znatno niza od temperatura mora u ljetnim mjesecima. Najmanja aklivnost izvora je u avgustu, pa prema tome i najmanji njen uticaj na temperaturu morske vode.

Najniža godišnja temperatura površinskog sloja ($t^{\prime} \mathrm{m}^{\prime}$) konstatovana je u svim zalivima u februaru, a iznosi za Kotorski $9,9^{\circ} \mathrm{C}$, pa Risanski $10,8^{\prime \prime} \mathrm{C}$, za Tivatski $11,0^{\circ} \mathrm{C}$ i za Hercegnovski $11,8^{\prime}$ C. Godisnji gradijent temperature povrsinskog sloja ui Bokokotorskom zalivu iznosi $15,3^{3} \mathrm{C}$.

Minimalna godišnja temperatura pri samom dnu ($t^{\circ} \mathrm{mD}$) (dubina coa 31 m) nađena je u februaru u Risanskom zalivu ($12,4^{4} \mathrm{C}$), a maksimalna ($t^{\prime} \mathrm{mD}$) u oktobru u Hercegnovskom zalivu ($22,3^{1} \mathrm{C}$). Prema tome, godišaji gradijent temperature pri dnu iznosi $9,9^{\circ} \mathrm{C}$.

U periodu ovih istraživanja homotermija nije bila uspostavljena ni u jednom od unutras̃njit zaliva. Ako ove nase podatke godišnjih temperaturnih kolebanja uporedimo sa podacima ma drugim područjima u otvorenom moru (Buljan i Marinkovic 1956., Zore i Zupan 1960.) pokazuju se dosta izrazite razlike, sto je posljediea uticaja kopnenih voda sa velikim temperaturnim razlikama, cemu doprinosi i zatvorenost samog Zaliva

Iz isth razloga sezonska kolebanja ne pokazuju uvijek pravilnu temperaturnu sukeesivnost, loja je poznata i utvodena za otvorene porvršine sa mnogo manjim uticajem kopnenih voda.

Temperatume razlike koprenth pritoka i temperature mora ponekad iznose i $10-15^{\circ} \mathrm{C}$ (Zlokovic 1939.).

Iz podatakn o salinitetu (Tabola 11) najbolje se może uočitt koliko je jako djelovanje priliva kopnenih voda aa zaslanjivanje mora u Bokokotorskom zalivu.

Maksimalne vrijednosti površinskog saliniteta donstatovane su u Tivatskom i Hercegnovskom zaliva, što se moglo ioceekivati jer se oni nalaze pod najslabijim direktnim djelovanjem priliva vode sa kupna i pod neposrednijim uticajem otvorenog mora.

Nasuprot tome, minimalna vrijednost saliniteta u toluu godine konstatovana je u Kutorskom zalivu koji se nalazi pod direktnim i najobilnijem djolovanjem jakih priliva slatke vode sa kopna, a iznosila je svega $10,177^{6} 6^{\circ}$. Svakako iz istih razloga je konstatovana cinjenica da ne postoje pravilna sezonska kolebanje povrsinskog saliniteta. Ako je uzimenje proba uslijedilo za vrijeme ili nakon obilnih padavina, vrijednost saliniteta je

osjetno opadala i obrnuto - jaka insolacija brzo djeluje na povečanje slanosti gornjih slojeva. Zbog toga je i konstatovan vtlo veliki gradijent gornjih slojeva, a iznosio je $27,70 \%^{\circ}$.

Mnogo slabije djelovanje kopnenih voda se odražava na salinitet pridnenih slojeva mora, tako da analize uzoraka donjih slojeva pokazuju malo odstupanja od vrijednosti saliniteta sa otvorenog mora, odnosno sa područja sa mnogo manjim doticajem slatkih voda.

Minimalna vrijednost saliniteta donjih slojeva konstatovana je takode u Kotorskom zalivy i to $34,54^{1 \%^{\circ}}$ na cea 20 m dubine, a maksimalna u Hercegnovskom zalivu $38,46^{55^{2}}$. Prema tome, godis̆nji raspon saliniteta pri dnu u Bokokotorskom zalivu iznosio je svega $3,92 \%^{40}$ (što je neznatno u odnosu na $27,70^{2 / 6^{6}}$ na povrsini). Pojavu ovog minimuma u Kotorskom zaliva tuma ifinis relativnom plicínom mora na mjestu uzimanja uzoraka, kao i vrlo jakim bujicama, vrelima I rijekom, ciji se kapaciteti višestruko povećavaju u toku i nakon jakih oborina doojima obiluje ovaj kraj.

Kako su sezonske oscilacije saliniteta pridnenih slojeva mora u ovom Zalivu minimaine (a one su za nas interesantne), u odnosu na druge abiotske i biotske uslove sredine, to ne bi mogli zaključivati o njihovoj uticajnosti ma sezonsku dinamiku bentoskih populacija riba.
TABELA br. 11
Table 11

GODISNJA	KOLEB $=\text { povr }$		RATU (196 of t $\mathrm{D}=$ rašn	$\begin{gathered} \text { I SA } \\ -196 \\ \text { peratu } \\ \text { o) - (} \\ \text { zal } \end{gathered}$	TETA dina) nd sal urface Insid		bay $D=1$	$\mathrm{M} \mathrm{Z}$ m)	
Mjesec month	Sloj layer	Kotorski		Risanski		Tivatski		Hercegnovski	
		T0 ${ }^{\circ}$	Sal. 900	T'C	Sal. \%о	T0 ${ }^{\text {c }}$	Sal. \%o	$\mathrm{T}^{4} \mathrm{C}$	Sal. \%o
1963.	P	19.9	26,65	21,2	19,34	21,6	34,30	21,4	34,96
Maj	S	16,8	,	18,0	,	16,3	,	19.5	-
May	D	15,8	34,54	16,5	35,84	15,6	36,87	17,9	37,18
Juni June	P	24,9	29,36	24,5	32,13	25,5	34,74	25,4	35,99
	S	18,0	-	17,8	-	17,3	,	18,6	,
	D	16,5	36,19	16,5	35,93	16,8	37,14	16,2	37.74
Juli July	P	24,6	34,86	22,8	34,96	22,6	37,54	25,2	37,72
	S	18,6	-	18,5	-	18,2	-	18.0	-
	D	16,8	37.70	16,9	37,50	16,0	38,45	16,4	38,35
August Aug.	P	25,1	35,06	24,3	34,08	23,2	37.73	23,8	37,81
	S	17,1	7	17,2	,	16,7		16,5	-
	D	16,3	37,27	19.9	36,88	16,1	38,24	15,7	38,26
Septembar Sept.	$\stackrel{\text { P }}{ }$	18,1	12,56	18,6	10,99	22,6	35,34	-	-
	S	22.9	-	22,6	-	22,5	-	-	-
	D	19,1	37,34	19,4	36,76	18,0	38,13	-	-

$\stackrel{\infty}{\sim} 1 \stackrel{\sqrt{n}}{\sim}$	111	$\frac{\infty}{\infty} 1 \frac{\infty}{m}$	芯1 会会	$\frac{\mathrm{O}}{10} 1 \frac{\mathrm{~m}}{\mathrm{~m}}$	$\frac{\sim}{\sim} 1 \stackrel{0}{0}$	$\stackrel{0}{\sim} 1$
会命骨	111	或或	not	里沓品	寺1号	miz
$\underset{\sim}{\text { R }}$		各	$\stackrel{\infty}{\infty}$		込1年	$\stackrel{\circ}{\sim} 1 \stackrel{\bar{c}}{\sim}$
ロロッ゙入	Nose	団号	永 ${ }^{\text {² }}$	010	®1	\＃1
$\underset{\sim}{\sim}$	命1	岩1亭	$\underset{\sim}{\text { ¢ }}$	弪 1	8 $\stackrel{\sim}{\sim}$ \cdots	$\frac{\square}{\text { N }} 1$
शैले	\cdots	※ñ		$\stackrel{\infty}{\sim} 1 \underset{\sim}{\square}$	令 10	O1
$\stackrel{\sim}{\infty}$	甬\|	侖\|	令1	$\stackrel{8}{\infty} 1 \frac{\infty}{5}$	$\frac{\text { ci }}{\sim}$	永।
$\stackrel{\infty}{\infty}$	Nro	或め心	¢¢	$\stackrel{\text { \％}}{\sim}$	$\stackrel{\mathrm{N}}{\mathrm{y}} 1 \mathrm{~m}$	ते $1 \vec{\sim}$
のぃロ	$\min A$	が寺	$\min A$	的め日	ニいA	
$\frac{H}{\frac{0}{3}}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			离䨗	宫言

5. Kvantitativna raspodjela i godišnje kolebanje zoobentosa (endofaune) u Bokpkotorskom zalivu

Sistematska kvalitativna i kvantitativna istraživanja bentoske faune (jsključujuéi ihtiobentos) vtšena su pretežno u sjevernom Jadranu (Vatova 1928., 1934., 1935., 1940., 1943., 1947.), manje u srednjem Jadranu (Vatova 1947., 1949., Gamulin-Brida 1926.), a najmanje u južnom Jadranu (Ga-mulin-Brida 1963.). Pored navedenih vršena su pojedinačna istraživanja pojedinih skupina Pax (1952.), Pax-Mülex (1953.), Pesta (1918.), Kükentahl (1909.), Lendenfeld (1891.) i dr.

Pored fizicko-hemijakih svojstava supstrata (vrste dna) i hidrografskih prilika (temperaturei saliniteta vode), uslovi ishrane predstavljaju u svakom sluçaju bitan faktor kvalitativne distribucije i gustoce bentoskih populacija riba, a prema tome i odredenu važnost u morskom ribarstvu. Vatova (1948.) ističe ovaj uticaj i kaže: $>$ Dalla quantitá di animali vivi (biomassa) che stanno sul fondo, si puo per rifflesso conoscere la quantita di nutrimento a disposizione del pesci bentonicie.

Zbog toga smo se u ovom radu od biotskih faktora sredine ograničili na ispitivanje kvantitativne raspodjele bentoske zoolaune (zoomase), koja je nađena u gornjim slojevima taloga dna (endofauna).

Na 21 fiksiranom punktu u Bokokotorskom zalivu uzimani su četiri puta godisnje (sezonski) uzorci taloga morskog dna pomoéu Pe tersenovog grabila od $1 / 5 \mathrm{~m}^{2}$. Na samom brodu izvršen je trijaž sedimenata i zoomase pomoću tri sita. Velielina otvora trećeg (najfinijeg) sita iznosila je $1 \mathrm{~mm}^{2}$. Preostali materijal u sitima (organski i neorganski) konzerviran je u četiri postotnom formalinu. U laboratorijumu je izvršens separacija organskog od anorganskog dijela, te kvantitativno (volumetrijsko i težinsko) mjerenje jednog i drugog.

U tabeli 12 dajemo rezultate ancliza zoomase i neorganskog dijela u Bokokoterskom zalivu

TABELA br. 12
Table 12

KVANTITATIVNI PAEGLED BENTOSKE ZOOMASE (ENDOFAUNE) DOBIVEVE PETERSENOVIM GRABILOM U BOKOKOTORSKOM ZALIVU

Quantitative survey of endofauna by Petersen grab in B. K. bay

	Sczona season	Prosjek zoumase (endofaune) po sezonama i zalivimat na $1 \mathrm{~m}^{2}$ Average of endofauna per seasons and inside bays ($1 \mathrm{~m}^{2}$)		Korekcija u odnosu na stanje grabila na $1 \mathrm{~m}^{2}$ Correction concerting the opening of the grab ($1 \mathrm{~m}^{\mathrm{*}}$)		Godišnji prosjek po zalivina annual everage per each bay	
		težina 11 gr weight (g)	volumen $4 \mathrm{~cm}^{8}$ volume (cm²)	tezina u. gr weight (g)	volumen 4 cm^{s} volume ($\mathrm{cm}^{\text {a }}$)	$\mathrm{gr} / \mathrm{m}^{4}$	$\mathrm{cm}^{2} / \mathrm{m}^{3}$
$\begin{aligned} & \frac{2}{n} \\ & \frac{1}{3} \\ & \frac{2}{3} \end{aligned}$	Winiter	18.7	158	18,7	15,8	25,0	23,2
	proljecte Spring	37,23	295	37.2	295		
	lielo	12,28	125	36,8	375		
	je en Autumis	7,10	100	7,10	10,0		
$\begin{aligned} & \frac{7}{4} \frac{1}{5} \\ & \frac{1}{x} \\ & \frac{1}{2} \end{aligned}$	Wimer pratjece Spring jelo summe $\mathrm{i}_{\mathrm{sen}} \mathrm{sen}$ Ay umn	16,03	138	16,03	13,8	49.1	$43,3$
		8.25	58	17,7	11.8		
		27,81	22.0	68,3	35,1		
		76,50	62,5	134,5	112,5		
$\begin{aligned} & \frac{\pi}{n} \\ & \frac{3}{2} \\ & \hline \end{aligned}$	${ }_{\text {Lima }}^{\text {ximier }}$	8,05	6.0	11,7	8,3	38,9	22,4
	prol ete Spring	12,66	93	14,0	16,3		
	1jeto	38.08	18.2	102,0	41,6		
		17,83	15,5	28,0	32,2		
	$\mathrm{zims}_{\text {Winler }}$	1,95	5,8-	18,0	17.3	36,6	27,5
	$\begin{aligned} & \text { projizce } \\ & \text { Spring } \end{aligned}$	9,13	6,0	20,1	13,0		
	$\begin{aligned} & \text { yjeto } \\ & \text { stminuer } \end{aligned}$	27,5	44,5	89,0	55,0		
	jesen Autume	17,5	19,5	19,5	17,5		

Iz navedenih podataka vidljivo je da kvantitet bentoske (zoomase) endofaune dostiže maksimum u ljetnjem periodu ($74,02 \mathrm{~g}$ po $1 \mathrm{~m}^{\mathrm{F}}$), a minimum u zimskim ($16,1 \mathrm{~g}$). Ako uporedimo godišnje prosjeke u unutrašnjim zalivima, dobivamo najveéu vrijednost za Risanski zaliv 49,1, a najmanju za Kotorski 25,0 . Izrazito smanjenje vajednosti bentoske zoofaune u Kotorskom zalivu moz̈eno protumacití jedino jakim zagađivanjem morn otpadnim vodamn industr je koje uticu u ovaj mali i zatvoreni Zallv (što se inače postavlja kao problem i traže se rješenja za spriječavanje stete od toga). Iz postavljenog korelacionog odnosa između kretanja ulova po jedinici napora i kolicine zoomase dna (S1.9) vidljiva je ocita medusobna zavisnost Tako, maksimalni ulov po jedinici napore postignut je u ljetnjim mjesecima (VIII, IX, X - SI. 8), Sto poklapa sa maksimalnim alovom zoomase na morskome dnu ispitivanog područja ($74,02 \mathrm{~g}$). Minimalni ulov po jedinici napora bio je u zimskim mjesecima, sto se poklapa sa minimalnim nalazom zoomase dna (endofaune) u to doba. Ovo odudara od stanja stvari u veéini ostalih uzobalnih podruçja na kojima ribolov kočama u zinskoj polovini godine postiže znatno veće lovine nego u ljetnjoj.

Da bismo dobili jasniju sliku o kolicini zoomase (endofaune) u Bokokotorskom zalivu uporedićemo naše podatke sa podacima koje je dobio Vatova 1934., 1935. i 1936. godine na nekim drugim podrǔ̌jima uz obalu Jadrana. Radi komparativnosti odabrali smo podatke o nalazima sa plićih područja.

Podrucje	vrijeme (zamanja proba	Dubina 4 m	Težina zoomase (endofaune) g na $1 \mathrm{~m}^{2}$
TRSCANSKI ZALIV	VII - 1934.	14-37	$65,45 \mathrm{E}$
KOD OTOKA PAGA	VII - 1934.	$30-85$	34.42 lz
ispred Pule i Losinja	VII - 1934-1935.	38-66	$22,16 \mathrm{~g}$
ispred Dugog Otoka	VII i VII 1935/36	44-99	$4,22 \mathrm{~g}$
između Pašmans, Murtera i Splitslog k .	VII - 1935.	8-75	$43,58 \mathrm{~g}$
KVARNER	IX - 1935.	50-52	26.28 g
SREDNII JADRAN	VII - 1935/36	34-100	$47,04 \mathrm{~g}$

Kao što vidimo, podaci su uzimani uglavnom u ljetnim mjesecima. Eko ove podatike uporedimo sa naşim poducima u ljetnjim mjesecima iz tabele 12, vidljiva je osjetna razlika na osnovu koje zalključujemo o većem bogatstyu bentoske zoomase (endofaune) uopste u Bokokotorskom zalivu. Prosječna količina zomase sa pomenutih područja Jadrana iznosi 37,4 grama na $1 \mathrm{~m}^{2}$, dok je prosječna kolicina u Bokokotorskom zalivu
prema nakiim podacima, iznosila u ljetnjim mjesecima 74,02 grama na 1 m Ova cifra ima stvarno još veeu relativnu vrijednost, kada se uzme u obzir da su u Boki, na koc̆arskim dnima netaknute populacije ihtiobentosa, glavnog potrošača endofaune, dok je u ostalom ispitivanom Jadranu ithtiobentos reduciran ribolovom.

Količina bentoske zoomase (endofaune) u Bokokotorskom zalivu po sezonama iznosila je:

- za zimski period. $16,1 \mathrm{~g} / \mathrm{m}^{2}$
- za proljetni period 22,3 "
- za ljetnji period 74,0 .
- za jesenji period 47,3 „
Prema tome, godiľ̌nji prosjek bentoske zoomase (enciofaune) u Bokokotorskom zalivu iznosio je $39,93 \mathrm{~g} / \mathrm{m}^{2}$.

	てદ乙				$\varepsilon \varepsilon\rangle$			
		092					1.67	
\＃iflicis alemy wat msays m 	o in 1	2	$\stackrel{19}{19}$	¢	\％	$\stackrel{\infty}{\underline{0}}$	120	N
14 spuse n E4Ifay Milstid	0	等	109	2	$\xrightarrow{0}$	N	－	枵
	∞ 18	$\begin{aligned} & 4 / 2 \\ & \text { 合 } \end{aligned}$	$\stackrel{17}{2}$	8	\cdots	in	－i	\％
	∞	䇛	$\begin{aligned} & \infty \\ & \sim \\ & \sim \end{aligned}$	5	\％	¢ ${ }_{\text {c }}$	$\begin{aligned} & \vec{\infty} \\ & \stackrel{r}{r} \end{aligned}$	\％
		近	$\begin{aligned} & 0,0 \\ & 505 \\ & 2020 \end{aligned}$	$\begin{aligned} & \text { 昌 } \\ & 0 \end{aligned}$	（28			
 स्य17日1		\％ 8		$\underset{\sim}{9}$	$\frac{8}{9} \frac{\text { in }}{4}$	${ }_{n}^{\circ}$		$\begin{array}{ll} 8 & 8 \\ 00 \\ i n \end{array}$
－biad asempaz 		\cdots	\％枵	8	in 2			
	等m min in	¢		$\underset{\sim}{\text { Y }}$		8 ${ }_{2}$	的 A 加 N 	88 $=9$
zag \％aswume uramion		$\stackrel{5}{0}=$	9 gin 9	\％	\％ C	r ㄹ		80
$\begin{aligned} & \text { E } \\ & = \\ & = \\ & \text { E } \\ & \text { E } \\ & \frac{3}{D} \end{aligned}$	$\begin{aligned} & \overrightarrow{0} 0 \\ & 20 \\ & 90 \end{aligned}$	$\begin{array}{ll} \ln 8 \\ 18 \end{array}$	$\begin{aligned} & 08 \\ & \text { in } 08 \\ & 0 \end{aligned}$	O g y	$\begin{array}{cc} 0 & 9 \\ 10 & 4 \\ 10 & \underline{2} \end{array}$	$\begin{array}{ll} \infty & 0 \\ 18 \\ 0 \end{array}$		\％
		\cdots	$\begin{aligned} & 8 \\ & \frac{8}{0}=8 \\ & \hline 0 \end{aligned}$	$\frac{\underline{m}}{\underline{m}}$	（3）	$\frac{\pi}{2}$		$\begin{aligned} & 3 \\ & \text { 尤 } \end{aligned}$
$\begin{aligned} & \stackrel{5}{a} \\ & = \\ & \frac{\text { en }}{5} \\ & \stackrel{\omega}{\circ} \end{aligned}$		$\frac{0^{-\infty}}{0}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\left\lvert\, \begin{array}{ll} 0 & 0 \\ = & \frac{10}{m} \end{array}\right.$	$\begin{array}{ll} \infty & 1 \\ 0 & 1 \\ 8 & \infty \end{array}$		$\frac{\square}{\text { S }}$
		$\begin{aligned} & 48 \\ & 10 \text { g } \end{aligned}$		$\frac{9}{9}$		108		$\stackrel{\square}{\text { N }}$
84029	Y 112	T7088	DIE1	V3831	1812	T70．d	01317	M3931
A11EZ	AITVZ ISSYOLOX				MIVZ IXSNVSİ			

5 たて				C＇LZ			
688				998			
\cdots	$\stackrel{m}{\square}$	$\stackrel{\square}{2}$	\＃	E	－	is	${ }^{21}$
$⿳ 亠 丷 厂$	8	E	$\underset{\sim}{3}$	－	इ̄̃	\％	${ }^{2}$
8	$\%$	$\underset{\sim}{\infty}$	$\stackrel{17}{17}$	∞	O	$\stackrel{19}{7}$	\％
8	$\begin{aligned} & 8 \\ & \text { N } \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \stackrel{8}{5} \end{aligned}$	哭	E	${ }_{2}$	\pm
	g					盛	帚
为碞 8			$\begin{aligned} & 898 \\ & \text { 第 } 98 \end{aligned}$		\cdots	$\begin{aligned} & B_{1} \\ & \overline{7} \end{aligned}$	\％
$m \mathrm{~m}$	$\stackrel{n}{\square}$	令	$\begin{aligned} & \text { in } \\ & =0 \\ & \hline \end{aligned}$	8	Q E	$\stackrel{\text { N }}{\mathrm{N}}$	\％
¢ \sim \％		5		in 8	$\stackrel{4}{6}$	\％	8 7
N～	可詨	goorsin in in	ते C	$\geq=$	88	S_{5}	\％
in 0	$\begin{array}{lll} \infty & 0 \\ 0 & 0 \\ 0 \end{array}$		$\begin{array}{ll} \text { n } 0 \infty \\ \text { 天 } \\ \text { in } \end{array}$	$$		0 $\stackrel{3}{3}$	\％
픋				$\stackrel{\text { I }}{\underset{\sim}{\infty}}$	9	告	－
				$\stackrel{\infty}{\infty} \stackrel{\infty}{\underset{\sim}{y}}$		$\begin{aligned} & \text { m } \\ & \stackrel{y}{0} \\ & \stackrel{N}{2} \end{aligned}$	\％
	\％		$\begin{aligned} & \text { a } \\ & \text { 等 } \\ & \text { in } \end{aligned}$		\％	$\stackrel{\stackrel{\sim}{4}}{\stackrel{\sim}{4}}$	㝽
VWII	303 melig	11311	13331	V112	39317088	0137	4333
AJTVZ IMSIVAII				AITVZ IMSAON＇H			

V IHTIOBENTOS I JESTIVI AVERTEBRATI U BOKOKOTORSKOM ZALIVU

U toku 1963. i 1964. godine izvršeno je 78 kočarskih lovina u Bokokotorskom zalivu. Konstatovano je 61 vrsta riba i jestivih avertebrata sa ukupno 51.557 individua.

Popis vrsta nadenih u Bokokotorskom zalivu

> Teleostea:

Arnoglossus laterna (WALB.)
Blennius ocellaris L.
Box boops BP.
Cepola rubescens L.
Clupea pilchardus WALB.
Conger vulgaris CUV.
Crenilabrus cinereus (BONN.)
Dentex gibbosus COCCO
Engraulis enchrasichotus (L.)
Eucitharus linguatuia (GILL.)
Gobius jozo L.
Gobius macrolepis KOLOM-
BATOVIC
Gobius quadrimaculatus C. V.
Lepidotrigle aspera (C. Val.)
Merluccius vulguris FLEM.
Mullus barbatus L.
Mullus sumuletus L.
Pagellus centrodontus C. V.
Pagellus crythrinus (L.)
Paracentropristis hepatus (KLUNZ.)
Pagrus Ehrenbergi C. V.

Pagrus vulgaris C. V.
Sargus annularis GEOFFR.
Sargus vulgaris GEOFFR.
Smaris alcedo BP.
Smaris vulgaris C. V,
Scorpaena scrofa L.
Scorpaena ustulata LOWE
Solea monochir BP.
Solea vulgatis QUENSEL
Sparus auratus L.
Sphyraena spet 1.AC.
Sertanus cabrilla CUV.
Stromateus Fiatole L.
Trachinus draco L.
Trachurus Linnaei MALM
Trachurus mediterraneus LTKN.
Trigla corax BP.
Trigla gumardus STDCHNR.
Trigla lineata L. GM.
Trigla lyra L.
Trigla lyra
Zeus faber \mathbf{L}.

> Selachia:

Galeus canis BP.
Mustelus laevis (ROND)
Mustelus vulgaris M.HLE.
Myliobatis aquila L.
Myliobatis bovina GEOFFR.
Raje clavata L.

Raja miraletus \mathbf{L}.
Raja Montagui FOWLER
Squatina laevis CUV.
Scylliorhinus canicula L.
Torpedo marmorata RISSO
Trygon pastinaca CUV.

> Avertebrata:

Eledone moschata LEACH.

Loligo sp.

Sepia officinalis L.

Sepiola sp.
Todarodes sp.
गctopus velgaris LAM.

Težina तitavog sakupljenog materijala iznosila je 1.661 kg . Selachia su zastupljeni sa 12 vrste i 341 , primjerkom i sa ukupnom težinom od $314,65 \mathrm{~kg}$, şto predstavlja $0,66 \%$ od ukupnog ulova po broju individua j $18,96 \%$ po terini.

Najveci broj Selachia registriran je na poziciji 7 (Tivatski zaliv), a iznosio je 97 individua, 11 vrsta sa težinom od $74,27 \mathrm{~kg}$, a najmanji na poziciji 3 (Risanski zaliv), gdje je nađeno 5 vrsta sa 8 primjeraka i tezinom od $11,02 \mathrm{~kg}$.

Kvalitativno-kvantitativni sastav vrsta unutar naselja mijenjao se u toku godine. Da bi se on mogao pratiti. tj. da bi se moglo uočiti stanje i promjene naselja ihtiobentosa unutar biotopa, ucestalost vrsta po pozicijama obrađena je na principu konstantnosti u naselju kroz godinu (relativna gustina) i na principu broja individua bez obzira na konstantnost (apsolutna gustina).

Relativnom gustinor. se određuje ucestalost svake vrste u naselju u toku godine na bazi konstantnosti. Stepen relativne gustine odreduja se brojem poena. Vrsti koja je najbolje zastupana u jednoj lovini dali smo 10 poena. Ista vrsta u svakoj narednoj lovini na istoj poziciji (području) dobiva poene prema mjestu koje zauzima po broju individua. Prema tome, najveći mogué broj poena dobice ona vrata koja je najobilnije zastupana u toku godine na odredenom području. Maksimalno mogući broj poena jednak je broju lovina puta 10. Pos̀to u našem slučaju na svakoj poziciji nije izvršen isti broj lovina, to ce maksimalno moguéi broj poena biti različit za pojedine pozicije

Apsolutnom gustinom uznsčava se ukupan broj individua pojedine vrste na određenoj poziciji bez obzira na njihovu učestalost u toku godine

Relativna gustina vrsta u naselju kroz odrecteni period daje sliku karakteristike naselja, odnosno promjena koje se u njemu des̉avaju tokom godine. T\&ko, na primjer, ako jedna vrsta nije karakteristićna za naselje (sporadična) dobiće mali broj poena, iako se jedanput godisnje pojavila u najvećem broju. Ta vrsta moz̃e, prema apsolutnoj gustini, zauzeti i prvo mjesto (jer na apsolutnu gustinu ne utiče konstantnost), dok prema relativnoj gustini može zauzeti čak i posljednje mjesto, jer nije karakteristična za naselje.

U slijedecim tabelama dajemo raspodjelu vrsta prema njihovos relativnoj i apsolutnoj gustini na ispitivanim pozicijama:

Pozicija 1 (Kotorski zaliv)
Relativna i apsolutna gustina
Maksimalno moguéi broj poena 110

Station 1 Kotor bay)
Relative and apsolute density
Max. possible number of points 110

Species	$\begin{gathered} \text { Gustina } \\ \text { Relativna } \\ \text { Apsolutna } \end{gathered}$				
	Položaj	Poena	Polozaj	Be . ind.	\%
Paracentropristis hepatus KLUNZ	1	106	1	2.276	32,64
Smaris vulgaris CV.	2	99	2	2.501	30,05
Pagellus erythrinus (L.)	3	92	2	1.533	18,18
Gobius jozo L.	4	51	4	335	4,02
Lepidotrigla aspera (C.VAL.)	5	49	5	248	2,98
Mullus barbatus L.	6	48	6	230	2,76
Eucitharus linguatula GILL.	7	31	7	157	1,88
Trachurus mediterraneus LTKN.	8	25	9	89	1,06
Sargus annularis GEOFFR.	9	24	8	93	1,10
Pagrus vulgaris C. V.	10	19	13	46	0,55
Sepia officinalis L.	11	16	12	54	0,64
Pagrus Ehrenbergi C. V.	12	10	10	79	0,95
Loligo sp.	13	,	11	54	0,65
Cepola rubescens L.	14	8	14	37	0,43
Merluccius vulgaris FLEM.	15	8	18	20	0,24
Box boops BP.	16	7	19	13	0,15
Trachurus Linnaei MALM.	17	6	15	32	0,38
Dentex gibbosus COCCO	18	5	17	24	0,28
Gobius macrolepis KOLOMBATOVIC	19	5	22	6	0,07
Sargus vulgaris GEOFFR.	20	3	16	26	0,31
Forpedo marmorata RISSO	21	1	20	8	0,09
Raja clavata L.	22	1	21	8	0,09
Conger vulgaris CUV.	23	1	23	3	0,03

Pozicija 2 (Kotorski zaliv)
Relativna i apsolutna gustina
Maksimalno mogući broj poena 100

Station 2 (Kotor bay)
Relative and apsolate density
Max. possible rumber of points 100

Paracentropristis hepatus KLUNZ	1	90	2	2.479	28,16
Smaris vulgaris CV.	2	87	1	3,314	37,41
Pagellus erythrinus (L.)	3	83	3	1.377	15,65
Mullus barbatus L.	4	53	5	312	3.54
Trachurus mediterraneus LTKN.	5	45	4	526	5,97
Lepidotrigla aspera (C.VAL.)	6	40	6	173	1,95
Eucitharus linguatula GILL.	7	38	7	160	1,82
Loligo sp.	8	25	8	100	1,14
Sepia officinalis L.	9	22	9	63	0,71
Arnoglossus laterna (WALB.)	10	22	15	23	0,25
Gobius jozo L.	11	16	10	63	0,71
Merluccius vulgaris FLEM.	12	14	13	33	0,37
Ccpola rubescens L	13	8	11	48	0,54
Sargus annularis GEOFFR.	14	7	12	35	0,39
Pagrus Ehernbergi C. V.	15	8	14	30	0,34
Sargus vulgaris GEOFFR.	16	3	17	8	0,09
Trigla gurnardus STDCHNR.	17	2	19	2	0.02
Pagrus vulgaris C. V.	18	1	16	15	0,17
Engraulis encrasicholus CUV.	19	1	18	5	0,05

KARAKTERISTIRE NASELJA U KOTORSKOM ZALIVU

Najobilnije zastupane vrste u Kotorskom zalivu su Paracentropristis hepatus, Smaris vulgaris i Pagellus erythrinas (apsolutna gustina). Iste vrste su i najstalnije (relativna gustina), te prema tome i dominantne i po relativnoj i apsolutnoj gustini.

Ove tri vrste su zastupljene sa 13.930 primjeraka, sto iznosi 99% od ukupnog ulova u Zalivu.

Pozicija 3 (Risanski zaliv) Relativna f apsolutna gustina Maksimalno mogući broj pena 90

Station 3 (Risan bay)
Relative and apsolute density
Max, possible number of points 90

Species	GustinaRelativna \quad Apsolutna				
	Polożaj	Poena	Polożaj	Br - ind.	88
Smaris vulgaris CV.	1	87	1	2.574	47,54
Paracentropristis hepatus KLLNZ.	2	78	2	886	16,36
Pagellus erythrinus (L.)	3	71	3	649	12,00
Lepidotrigla aspera (C.VAL)	4	62	4	421	7,79
Mullus barbatus 1.	5	45	5	205	3,78
Eucilharus linyuatula GILL.	6	42	6	198	3,65
Gobius jozo L.	7	27	8	98	1,80
Trachurus mediterraneus LTKN.	8	20	7	128	2,36
Sepia ollicinalis L.	9	12	11	32	0,59
Merluccius vulgaris FLEM.	10	11	10	42	0,77
Eledone moschata LEACH,	11	8	15	12	0,22
Loligo sp.	12	6	9	78	1,44
Sargus annularis GFOFFR.	13	6	16	12	0,21
Trachurus Linnaci MAIM.	14	5	13	22	0,40
Pagrus vulgaris C V.	15	5	14	13	0,24
Torpedo marmorata RISSO	16	4	19	4	0,07
Box boops BP.	17	3	17	8	0,15
Gobius macrolepis KOLOMRATOVIC	18	3	12	26	0,48
Pagrus Ehrenbergi C. V.	19	1	18	7	0,11
Trygon pastinaca CUV.	20	1	20	1	0,02

Pozicija 4 (Risanski zaliy)
Relativna i apsolutna gustina
Maksimalno mogued brof poena 100

Station 4 (Risan bay)
Relative and apsolute density
Max. possible number of points 100
Smaris vulgaris C. V.
Paracentropristis hepatus KLUNZ
Pagellus erythrinus L.
Lepidotrigla aspera (C.VAL)
Mullus barbatus L.
Eucitharus linguatula GILL.
Loligo sp.
Gobius jozo L.
Sargus annularis GEOFFR.
Pagrus Ehrenbergi C. V.
Merluccius vulgaris FLEM.
Sepia olticinalis L.
Trachurus Linnaei MALM.

1	93	1	2.172	36,28
2	82	2	1.102	18,43
3	82	3	916	15,31
4	64	4	556	9,29
5	44	8	178	2,97
6	38	7	201	3,36
7	37	5	225	3,76
8	37	6	204	3,41
9	21	10	51	0,91
10	17	9	175	2,92
11	11	12	39	0,65
12	8	15	21	0,35
13	7	14	22	0,36

Gobius macrolepis KOLOMBATOVIC	14	5	11	41	0,68
Crenilabrus sp.	15	5	13	22	0,36
Cepola rubescens L.	16	5	16	19	0,31
Pagus vulgaris C. V.	17	4	18	8	0,13
Conger vulgaris CUV.	18	3	19	8	0,13
Raja clavata L	19	3	17	12	0,20
Trigla lineala L. GM.	20	2	20	8	0,13

KARAKTERISTIKE NASELJA U RISANSKOM ZALIVU

Najčešce (relativna gustina) i najobilnije (apsolutna gustina) zastupane vrste u Risanskom zalivu su Smaris vuigaris, Paracentropristis hepatus i Pageltus erythrinus. Ove tri vrste u ovom Zalivu zauzimaju 72,1\% ukupnog ulova sa 8.299 primjeraka.

Pozicija 5 (Tivatski zaliv)
Relativna i apsoluina gustina
Maksimalno mogući broj poena 100

Station 5 (Tivat bay)
 Relative and apsolute density
 Max. possible number of points 100

Species	G is stin aRelativna Apsolutna				
	Polozaj	Pocra	Položaj	Br , ind	\% 5
Samaris vulgaris C. V.	1	95	1	2.537	32,71
Paracentropristis hepatus KLUNZ	2	86	2	1.432	18,46
Pagellus erythrinus L.	3	75	3	1.159	14,94
Lepidotrigla aspera (CVAL)	4	69	4	805	10,38
Mullus barbatus L.	5	67	5	631	8,13
Gobius jozo L.	6	42	6	265	3,41
Eucitharus linguatula GILL.	7	32	8	199	2,56
Loligo sp.	8	27	7	250	3,22
Sargus annularis GEOFFR,	9	21	9	113	1,45
Trachurus mediterraneus LTKN.	10	15	10	110	1,41
Trachurus Linnaci MALM.	11	6	11	35	0,45
Pagrus Ehrenbergi C. V.	12	6	14	24	0,30
Merluccius vulgaris FLEM.	13	5	12	34	0,43
Smaris alcedo BP.	14	5	13	27	0,34
Raja clavata L.	15	5	19	17	0,21
Sparus auratus L.	16	4	15	23	0,29
Scpia officinalis L.	17	4	17	18	0,23
Pagrus vulgaris C. V.	18	3	16	19	0,24
Eledone moschata LEACH:	19	3	18	18	0,23
Serrarus cabrilla CUV.	20	3	20	9	0,12
Sepiola sp.	21	3	22	8	0,11
Trygon pastinaca CUV.	22	3	23	5	0,06
Pagellus centrodontus C. V.	23	3	25	3	0,03
Cepols rubescens L.	24	1	11	9	0,12
Arnoglossus laterna (WALB.)	25	1	24	4	0,05
Scorpaena scrofa L.	26	1	26	2	0,02

Pozicija 6 (Tivatski zaliv)
Relativna i apsolutna gustina
Maksimaino mogući broj poena 90

Max. possible number of points 90 Relative and apsolute density Station 6 (Tivat bay)

Species	Gustin aRelativnaApsolutna				
	Položaj	Poena	Položaj	Br. ind.	46
Paracentropristis hepatus KLUNZ	1	85	2	1.669	27,66
Smaris vulgaris C. V.	2	79	,	1.794	29,73
Pagellus erythrinus (L.)	3	65	4	698	11,56
Lepidotrigla aspera (C.VAL.)	4	62	3	723	11,98
Mullus barbatus L.	5	58	5	481	797
Loligo sp.	6	30	6	166	2,75
Eucitharus linguatula GILL.	7	29	7	119	1,97
Gobins jozo L.	8	22	8	79	1,30
Sargus annularis GEOFFR.	9	17	9	56	0,93
Trachurus mediterraneus LTKN.	10	13	10	35	0.57
Sepia officinalis L.	11	11	13	26	0,43
Pagrus Ehrenbergi C, V.	12	11	12	28	0,46
Merluccius vulgaris FLEM.	13	7	11	29	0,48
Smaris alcedo C. V.	14	5	17	14	0,23
Sargus vulgaris GEOFFR.	15	5	19	11	0,18
Trigla lineata L. GM.	16	4	14	19	0,31
Trachurus Linnaei MALM.	17	4	16	16	0,26
Sepiola sp.	18	3	15	17	0,28
Galeus canis BP.	19	2	23	8	0,13
Scorpaena ustulata LOWE	20	1	18	13	0,21
Serranus cabrilla CUV.	21	1	22	9	0,14
Zeus faber L.	22	1	20	10	0,16
Mustelus laevis RISSO	23	1	24	5	0,09
Raja clavata L.	24	1	21	10	0,16

Pozicija 7 (Tivatski zaliv)
Relativna i apsolutna gustina
Maksimalno moguči broj poena 100

Max. possible number of points 100
Relative and apsolute density
Station 7 (Tivat bay)

Pagrus Ehrenbergi C. V.	21	3	16	22	0,49
Pagrus vulgaris C. V.	22	3	18	20	0.42
Myliobatis aquila L.	23	3	21	13	0,27
Trigla lineata L. GM.	24	3	25	5	0,10
Trachurus Linnaei MALM.	25	1	23	11	0,23
Torpedo marmorata RISSO	26	1	24	11	0.23
Zeus Faber L.	27	1	27	3	0.06
Blennius ocellaris L.	28	1	28	2	0.04

KARAKTERISTIKE NASELJA U TIVATSKOM ZALIVU

U ovom Zalivu se primjećuje mala disharmonija između stalnosti (relativna gustina) i abundancije u neseljima. Tako Smaris vulgaris na poziciji 5 po relativnoj gustini zauzima prvo, a na poziciji 6 drugo mjesto.

Kao predominantna po abundanciji na poriciji 7 javlja se Eucitharus linguazula, dok na poziciji 6 zauzima sedmo mjesto.

Paracentropristis hepatus, koji na poziciji 5 zauzima drugo mjesto (po relativnoj i apsolutnoj gustini); na poziciji 6 po relativnoj dolazi na prvo, a po apsolutnoj gustini na drugo mjesto; na poziciji 7 je po relstivnoj na četvrtom, a po apsolutnoj gustini na šestom mjestu.

Pozicija 8 (Hercegnovski zaliv)
Relativna i apsolutna gustina
Maksimalno mogući broj poena 90

Station 8 (Hercegnovi bay) Relative and apsolute density
Max. possible number of points 90

Species	GustinaRelativna \quad Apsolutna				
	Polozaj	Poena	Položa	Br. ind.	\%
Smaris vulgaris C. V	1	79	2	872	21,24
Eucitharus linguatula GILL.	2	61	3	511	12,45
Mullus barbatus L	3	60	1	1.063	25,91
Lolito sp.	4	56	4	396	9,64
Pagellus erythrinus L.	5	51	5	228	5.55
Lepidotrigla aspera (C.VAL.)	6	41	6	302	7,15
Paracentropristis hepatus KLUNZ	7	33	7	204	4,97
Gobius jozo L.	8	31	8	143	3,44
Sargus annularis GEOFFR.	9	30	9	124	3,02
Merluccius vulgaris FLEM.	10	16	11	46	1.12
Trachurus mediterraneus LTKN.	11	11	10	48	1,19
Scorpaena ustulata LOWE	12	6	15	18	0,43
Gobius quadrimaculatus C. V.	13	6	13	22	0,53
Pagrus Ehrenbergi C. V.	14	5	12	23	0,36
Pagellus centrodontus C. V.	15	5	18	11	0,26
Solea monochir BP,	16	3	16	16	0,38
Sepia officinalis	17	3	14	20	0,48
Scrramus cabrila CUV.	18	3	19	11	0,26
Scorpacna scrofa L.	19	,	22	,	0,14
Irygon pastinaca CUV,	20	2	20	10	0,24
Sargus vulgaris GEOFFR.	21	2	23	3	0,07
Uranoscopus scaber L.	12	1	21	7	0,17
Raja miraletus L.	23	1	17	12	0,29
Raja clavata L.	24	1	24	6	0,14
Octopus vulgaris LAM.	25		25	1	0,CP
Clupea pilchardus WALB.	26	1	26	1	0,02

KARAKTERISTIKE NASELJA U HERCEGNOVSKOM ZALIVU

Dominantne vrste u ovom Zalivu su Smaris vulgaris, Eucitharts linguatula i Mulius barbatus. Prvo mjesto po apsolutnoj gustini rauzima Mullus barbatus (sa 1.063 primjeruka), ali po relativnoj gustini zauzima treće mjesto, što ukazuje na nestalnost odnosno oscilaciju učescea u naselju ut toku godine. Ova razlika tzmedu relativne i apsolutne gustine je posljedica imigracije u naselju velikog broja sitnih primjoraka ($4-6 \mathrm{~cm}$) u avgustu mjesecu.

Iz prednjih analiza bentoskih naselja Bokokotorskog zaliva na principu obilnosti vrsta u naselju (apsolutna gustina) i stalnosti, prisustva u naselju u toku godine (relativna gustina) proizilazi odredena rezidentnost i stalnost naselja odnosno populacija, koje ih sačinjavaju. Osjetnije migracije (emigracije i imigracije) pojedinih populacija se pokazuju jedino u Hercegnovskom zalivu (Mullus barbatuis). Ostale su, izgleda, Jokalnog karaktera i odvijaju se pretežno unutar Zaliva. Ova činjenica je vaz̆na kod ocjene abundancije naselja i moguenosti njihove racionalne eksploatacije.

1. SEZONSKE KVANTITATIVNE PROMJENE NASELJA

Sezonska dinamika populacija unutar naselja tretiraće se na nekoliko ekonomski najinteresantnijih vrsta. Ovdje cemo obraditi sezonske lvantitativne promjene u pojedinum naseljima na bazi diferencije ulova po jedinici napora u toku godine (pretpostavljajuái da ulov po jedinici napora uvijek reprezentuje samo naselje). Pored osnovnih fizikalnih faktora koji se mijenjaju u toku godine (temperatura, salinitet, svijetlo i dr.), na te promjene djeluju i mnogi fizioloskko-endogeni faktori, koji dolaze do izražaja naročito u doba reprodukcije, zatim potraga za hranom i drugo. Mi smo u ovom radu od abiotskih faktora obuhvatiii temperaturu, salinitet i supstrat, a od biotskih bentosku faunu.

Sezonske promjone obilja individua i njihove težine u bentoskim rioljim naseljiraa Bokokotorskog zaliva prikazane su na slici 8. Iz ovog prikaza se vidi da ulov u ljetnim mjesecima postepeno raste stim da se maksimum postiže u IX mjësecu, nakon coga dosta naglo opada i postaje manje-više uravnotežen, odnosno približno sličan ulovu vecine ostalih mjeseci

S1. 8. Sezonska promjena obilja bentoskih naselja riba i avertebrata u Bokokotorskom zallivu
Fig. 8. Scasonal changes in abundance of demersal communities in B. K. bay

Kretanje prosječnog ulova po jednom setu povlačenja po zalivima
Variation of average catch per hour haul in inside bays

Miesec	Unutrašnjizalivi							
	Kotorski		Risanski		Tivatski		Hercegnovski	
	kom. ind.	kg.	kom. inc.	kg.	kom. ind.	koml. ind.	kom. ind.	kg.
Januar	795	23.4	809	18,7	511	19.2	782	19,8
Februar	765	15,4	777	13.2	586	18,5	392	11,4
Mart	486	15,0	4126	29,10	709	21,7	402	5.4
April	677	30,0	419	11.0	627	24,0	260	12,6
Maj	860	18,5	221	7.8	600	25,0	392	13,2
Juni	922	35,4	376	11.4	774	29,2	255	96
Juli	772	24,6	760	32,1	636	21,9	314	12.6
August	1358	34,8	987	35,1	750	38,0	595	13.2
Septembar	2019	65,4	-	-	1471	44,8	-	-
Oktobar	270	5,2	1134	36,0	860	20,8	-	-
Novermbar	270	8,8	336	10,8	294	13,2	-	-
Decembar	1130	23,5	746	23,4	639	23,5	895	198

Iz navedenog prikaza a variranju ulova po jedinici napora u toku godine vidljivo je da se maksimalni ulov postiže u kasnijim ljetnim mjesecima (avgust, septembar). Ovo je u praksi dosta neucbicajena pojava. Poznato je naime, da se obično maksimalni ulov po jedinici napora u kozarenju inače postiže u zimskim mjesecima, a minimalni u ljetnim.

Ovo bi se moglo objasniti maksimalnim nalazom endofaune u tim mjesecima. Postoji naime vrlo igrazita korelacija izmedu endofaune i kretanja ulova po jedinici napora $\mathrm{I} \pm \mathrm{m}_{+} \ldots 0,8693+0,0653$ i $\mathrm{I} \pm$ E. $\mathrm{P}_{\mathrm{r}} \ldots$ $0,8693 \pm 0,0440$. Postoji također izvjesna korelacija izmedu temperature i ulova, ali je varijaciono-statisticki neopravdana (zbog malog broja varijanata) $\left(\mathrm{r} \pm \mathrm{m}_{7} \ldots 0,2330+0,2733\right.$, $\left.\mathrm{i} \mathrm{r}+\mathrm{E}, \mathrm{P}_{4} \ldots 0,2330 \pm 0,1843\right)$.

Opadanje ulova u ostalim mjesecima nije se moglo smatrati posljedicom emigracije pojedinith populacija iz mješovitog naselja riba, već se ispoljilo samo količinskim smanjenjem individua u lovinama, kao razređivanje populacija, odnosno naselja. Na osnovu pračenja prosječnih velicina ekonomski važnijjih vrsta nismo mogli konstatovati emigraciju iz naselja niti pojedinih kompletnih starosnih grupa riba.

S1. 9. Korelacija izmedu enclofaune i ukupnog ulova (po kežini)
Fig. 9. Currelation between endolauna and to:al catch (weight)

```
\eta=}=\frac{\sumV*VY-0,AxMr}{A\sigma*6y}=023:3
mN}=\frac{k\mp@subsup{N}{}{2}}{\sqrt{}{g}}=0.373
FAR - o. arks + +\frac{k}{\sqrt{}{N}}=0.NA43
PIMTR - 0.233010.2723
PHEP== .... D.2A30:O nB&
```


Si. 10. Korelaclja izmedu temperature 1 ukupnog ulova (po težlint)
Fig. 10. Correlation between temperature and total catch (weight)

2. APSOLUTNA I RELATIVNA GUSTINA NASELJA

Ako pretpostavmo da svaka lovina predstavlja reprezentativni uzorak naselja, onda proizilazi da bi ulov po jedinici napora trebao da bude proporcionalan gustini naselja na svakom području (Gulland 1955.), tj.
$\mathrm{g}=\mathrm{K} \mathrm{G}$
$\mathrm{g}=$ ulov po jedinici napora
$\mathrm{G}=$ gustina naselja u arealu
$\mathrm{K}=$ konstanta
Postoje, tsoretski, razne metode za procjenu abundancije, tj. broja i teżine bentoskih populacija na odredenoj površini, ali mi jedna nije u potpunosti zadovoljila niti našla širu prakticnu primjenu.

Pored direlstne metade, koja se sastoji u brojenju sin situ , što je praktički neizvodljivo na većim površinama it u moru, postoje i razne indirektne metode (na osnovu frekvencije starosnih grupa, mriješcenja, markiranjem itd.).

Kod procjene veličine naselja u Bokokotorskom zalivu mi smo izvršili izračunavanje na osnovu ulova po jedinici napora u vremenu od jednog sata povlačenja mreže, odnosno površine koja je za to vrijeme izlovljena. Ovo baziramo na gornjoj pretpostavei, koja se teoretski široko primjenjuje, tj. da ulov po jedinici napora zaista reprezentuje mješovito riblje naselje kako po odnosu vrsta (populacija) koje ga sačinjavaju, tako i po ukupnoj težini svake komponentne vrste. Greške koje se pri tome pojavljuju zavisiće, po nas̄om mišljenju, pored ostalog, od
a) prirode samog naselja;
b) dinarničnosti promjena koje se zbivaju u naselju; i
c) veličine, odnosno ograničenosti područja na kojemu se vrše istra-

tivanja.

Na primjer, mreža - koća, koja se povlači po dnu, procentualno de vise uloviti izrazito pridnenih vrsta (Raja, Solea, Pleuronectes itd.), a manje onih vrsta koje nisu pretežno vezane za samo dno (Smaris, Merlucius, Pagellus i sl.). Ili, uzorak dobiven ulovom po jedinici napora bice manje reprezentativan ako se odnosi na naselje sa većom dinamikom promjene sastava samog naselja (imigracijama i emigracijama).

Napokon, uzorak će biti reprezentativniji sa manjeg i zatvorenijeg područja.

Iz izvršenih analiza stanja i dinamike bentoskih populacija riba ; jestivih avertebrata u ovorn Zalivu možemo konstatovati:
a) da su bentoska naselja riba i avertebrata dosta ravnomjerno raspoređena u odnosu na bentoska naselja na drugim, narocito više otvorenim područjima;
b) da su izrazito pridnene vrste relativno malo zastupljene u Bokokotorskom zalivu, te da ne predstavljaju veću ekonomsku vrijednost, i
c) da Bokokotorski zaliv predstavlja izrazito zatvoreno područje sa specifičnim biotopom i relativno malim uticajem otvorenog mora.

Ove c̈injenice nas navode na konstataciju da ulov po jedinici napora reprezentuje stvarno stanje naselja, tj. sa manjim odstupanjima, nego sto bi to bio shučaj sa drugim kanalskim područjima i na otvorenom moru.

Obradu i izračunavanje procjene abundancije bentoskih naselja u Bokokotorskom zalivu iznijećemo u slijedéem poglavlju.

Relativnu gustinu po pozicijama odredicemo upoređivanjem ulova po jedinici napora na svakoj poziciji.

3. RELATIVNA GUSTINA NASELJA U BOKOKOTORSKOM ZALIVU PO POZICIJAMA Relative density of habitats of each station in B. K. bay

Pozicija position	Ulov po 1 satu povlačenja u kg. Catch per hour haul (kg.)		Relativna gustina $\mathbf{P}-\mathbf{1}=$ index 100 Relative density $\mathrm{P}-1=\text { index } 100$	
	kom. ind.	kg.	kom ind.	kg.
P-1	805	22,14	100,00	100,00
$\mathrm{P}-2$	437	28,20	116,39	128,18
$\mathrm{P}-3$	764	20,80	94,80	94,54
P-4	721	22,87	89,56	103,95
$P-5$	781	31,29	97,01	142,22
P-6	674	20,58	83,60	93,54
P-7	572	22,44	71,05	102,00
P-8	477	13,06	59,25	59,36

Iz ovog prikaza relativne gustine po težini i broju primjeraka karakteristična je pozicija 5, koja po broju individua ima vrijednost 97,01 , a po težini 142,22 (maksimalna vrijednost u Zalivu). To znači da su se na ovoj poziciji lovili prosječno največi (najteži) primjerci. Minimalnu relativnu gustinu pokazuje pazicije 8 po težini i po broju individua.

Raspon relativne gustine po težini iznosi $82,66 \mathrm{~kg}_{1}$ a 57,14 po broju individua.

4. BIOLOSKO-EKOLOSKE KARAKTERISTIKE EKONOMSKI NAJVAZNIJIH BEINTOSKIH RIBA U BOKOKOTORSKOM ZALIVU

a) PAGELLUS ERYTHRINUS L.

Biologija ove vrste je relativno malo istraživana s obzirom na njenu rasprostranjenost i privrednu vrijednost.

Batimetrijska distribucija populacije Pagellus-a ustanovljena je do 100 metara dubine. Analizirajuci podatke sa 167 lokaliteta iz preko 300 kočarskih lovina jugoslovenske elcspedicije = Hvark (Karlovac 1959.) konstatovali smo da ova vrsta nije nadena preko dubine od 100 metara. Ovo potvrduju nalazi Zupanovica i Grubišica (1959.), te Zeia i Sabioncella (1940.), Zeia (1949.), Rijaveca (rukopis) i drugih. Pored navedenih podataka

S. 11. Sezonske varijacije tulova Pagellus erythrinus a Bokokotorskem zalivu (preraćmato na jedinicu napora)
Fig. 11. Seasenal variations of catch Pagellus erythrinus in B. K. hay (per unit ettort)
o ovoj vrsti, nalazimo ih nesto malo još kod nekih autora (Syrski 1876.), Graeffe (1888.), D'Ancona (1949.). Zei i Sabioncello (1940.) istražujući bentoska naselja kanala srednje Dalmacije naleai Pagellus-a u Neretvljanskom kanalu prosječne dužine 14,1; u Bračkom kanalu 13, 06-14,3; izmedu Visa, Korčule i Drvenkka 14,2 (1939.) i 15,96 (1940.).

Zupanovié u statističkoj analizi koc̈arskih lovina istoc̈nog Jadrana od 1951. godine konstatuje ovu vrstu skoro na svim pocicijama istraživanog područja. Zei i Zupanovič (1961.) obrađuju selsualni ciklus i inverziju spola kod Pagellus-a.

Prema našim podacima sa sakupljenog materijala Pagellus erythrinus predstavlja ckonomski najinteresantniju vistu u Bokokotorskom zalivu.

U ulupnoj kolekciji salkupljenog materijala bentoskih riba zastupljen je sa 6.965 primjeraka i teřinom od $410,54 \mathrm{~kg}$, sैto iznosi $28,35^{\% 6}$ od ukupne težine i 13,50 procenata ukupnog broja individua.

Najbolje je zastupan na poziciji 1 sa 1.533 komada (Kotorski zaliv) i težinom od $86,83 \mathrm{~kg}$, a najslabije u Hercegnovskom gdje je ulovljeno ukupno 228 primjeraka. Naden je inače na swim pozicijama kroz čitavu godinu.

Srednja dužinska vrijednost Pagellus erythrinus-a u Bokokotorskom zalivu iznosila je $16,043 \mathrm{~cm}$.

Srednje dužine i rasponi po zalivima su:
$\begin{array}{llll}\text { - Kotorski } & 15,12 \mathrm{~cm} & \text { raspon } & 5-27 \mathrm{~cm} \\ \text { - Risanski. } & 15,88 \mathrm{~cm} & \text { raspon } & 5-26 \mathrm{~cm} \\ \text { - Tivatski . } & 17,40 \mathrm{~cm} & \text { raspon } & 6-25 \mathrm{~cm} \\ \text { - Hercegnovski } & 13,80 \mathrm{~cm} & \text { raspon } & 3-23 \mathrm{~cm}\end{array}$
Kao što se vidi, lovine sa najvecom srednjom dučnom nadene su u Tivatskom zalivu.

Zenke su zastupljene sa $87,20 \%$, a mužjaci sa $12,80 \%$ (hermafroditj nisu uzimant u obzir), Prosječna dużina żenki iznosila je $14,8 \mathrm{~cm}$, a mužjaka $22,2 \mathrm{~cm}$. Dužina je mjerena od vrha mandibule do kraja skupljenih sipki repne peraje. Poznata je i utvrđena pojava redovitog nastupanja inverzije spola kod ove vrette (Zei i Zupanović 1961, Rijavee - rukopis) Prema ovin podacima počeci invercije spola nastaju u trećoj godini starosti, tako da u 3 . i 4. godini imamo pojavu hermafroditizma, a u 5. i 6 . godini skoro 100% zavasenu inverziju spola. 1 lij , do 13 cm dužine żenke su zastupljene sa skoro 100% od 13 do 23 cm pojavljuje se hermafroditizam koji prestaje kod cea 23 cm potpunom inverzijom spol 3 , tj. stopostotnim prelazom u mužjake.

Naši podaci se ne bi u potpunosti slagali sa navedenim. Ako uporedimo dužinske vrijednosti (a ne staroone grupe) sa pojavom inverzije spola iz našeg materijala, proizilazi da do 18 cm nismo našli ni jednog mužjaka, što se ne bi slagalo sa kompartranim podacima. Početak inverzije i pojava hermofroditizna nasiupa kod vece dužinske vrijednosti,
tj. kod $15-16 \mathrm{~cm}$. Iz ovog bi prozisislo da do inverzije spola u Bokokotorskom zalivu dolazi u kasnijem dobu ili (Sto je vjerovatnije) uslovi zivota u ovom Zalivu su povoljniji, sto ima za posljedicu brzi rast barem u mlađim godinama, uprkos netaknutoj gustini odnosnih populacija riba. Međutim, maksimalne dužine koje smo pronasli u ovom Zalivu osjetno su niže (27 cm) od onih koje se navode za srednji Jadran (preko 30 cm). Ova bi nas cimjenica mogla navesti na pretpostavku da Pagellus erythrinus u kasnijem dobu migrira iz Bokokotorskog zaliva, ill pak da pregasta populacija ove vrste ima za posljedicu sponiji rast starijih godista, koji zbog toga ne postizavaju vece dužinske i tezinske vrijednosti (Petersen 1920.: Teorija razrjedivanja naselja - Thinning theory). Mrijestenje za

$$
\begin{aligned}
& r=\frac{\sum V_{2} V_{z}-a H_{x} H_{z}}{2 \sigma_{2} \sigma_{y}}=0.1602 \\
& \text { asp }-\frac{1-r i n}{1 n}=0.2 a r e \\
& \text { ER_-aci45 } \cdot \frac{1-c^{2}}{\sqrt{n}}=0.10 s 9
\end{aligned}
$$

Sl. 12. Korelacija imedu endofaune i broja Pagellus erythrinus L.
Fig. 12. Correlation betwen endolauna and number of Pagellus erythrinus
bvu vrstu u Bokokotorsiom zalivu konstatovano je od maja do avgusta što se ne bi sasvim slagalo sa nalazima iz drugih područja. Da bi se mogab dat siguran odgovor na ova i druga pitanja za ovu najinteresantniju vrstu Bokokotorskog zaliva, potrebno je izvrsiti detaljnija istraživanja, sto nije bilo moguće obuhvatiti ovin radom.

```
\(n=\frac{\text { DVA } V y-A A x M y}{n d x \sigma y}=0.9182\)
\(m=\frac{r-\mu^{3}}{\sqrt{\pi}}=0.0785\)
\(E P_{e}-0.6445+\frac{f-R^{2}}{\sqrt{n}}=0.529\)
AさMr a ......... D 9182 20 OPE 5
NIEPA = .......... \(0.9182 \pm 00529\)
```


SI. 13. Korelacija između temperature i ulova Pagelius erytirinus (po broju komada) Fig. 13. Correlation betwen temperature and catch Pagellus erythrinus (number of individ.)

Iz prikaza korelacionih odnosa izmedu populacije Pagellus etythrinus L., temperature i faune dna, prvenstveno endofaune (Sl.13), proızilazi vrlo jaka pozitivna korelacija izmedu pomenute populacije i kvantiteta endofaune ($s \pm \mathrm{m}_{t} \ldots 0 . .0182 \pm 0,0785$ i $i=$ E.P.r... $0,9182 \pm 0,0524$) Pokazuje se vrlo slaba pozitivna horelacija iamedu ulova i temperature ($r=0,1602$), tako da je varjacionc-stolisticeki neopravdana.

Iz prikaza raspodjele Pagellus erythrinus u odnosu na supstrat fie bi se moglo zaključiti o njegovoj zavisnosti od sastava taloga dna zbog toga Sto su potezi kocom zahvatili dna razne strukture.

> Sezonska distribucija Pagellus erythrinus L. po pozicijama

Iz prikaza sezonske distribucije Pagellus erythrinus uecljivo je da je njegova populacija prilicno ravnomjemo zastupljena u Boknkotorskon zalivu, osim na pocicijama 7. i 8., gdje uc̆estvuje sa manjim brojem primjeraka i težine.

Pozicija 1. (Kotcrski zaliv) Na ovoj poziciji je ulovljeno ukupno 1.533 komada u težint od $75,15 \mathrm{~kg}$, što iznoai prosječno 49,02 grama po jednom primjerku. Po relativnoj i apsolutnoj gustini dolazi na 3. mjesto.

Najbolji ulov po jedinici napora postignut je u VIII mjesecu (305 komada i $19,10 \mathrm{~kg}$). Minimalan ulov bio je u II mjesecu (20 komada i 0,60 kg). U ukupnom ulovu svih vrsta na ovoj poziciji zastupan je sa $18,24 \%$ po broju i sa $30,92 \%$ po težini.

Prisutan je u naselja ut toku citave godine.
Pozicija 2. (Kotorski zaliv) Ukupan ulov vrate Pagetlus erythrinu: na ovoj poziciji iznosio je 1.337 primjerala sa težinom od $73,93 \mathrm{~kg}$, iz čega proizilazi prosječna težina po jednom primjorku od 53,63 grama Proma relativnoj i apsolutnoj gusitini zauzirros 3. mjesto u naselju. Najbolji ulov ove vrsle po jecinici napora bio je u LX mjesecu (262 komada sa $17,55 \mathrm{~kg}$), a minimalan u V mjesecu (78 komada i $3,00 \mathrm{~kg}$). U ukupnom ulovu (naselju) na ovoj poziciji zastupan je sa $15,63 \%$ po broju, a sa $26,49 \%$ po težini.

U naselju je bio prisutan u toku citave godine.
Pozicija 3. (Risanaki zaliv) Ukupni ulov vrste Pagellus exythrinux na ovoj poziciji iznosio je 649 primjeraka (sa isorelvcijom 778,80) i težinom od $39,50 \mathrm{~kg}$ (sa korekeijom 47,40). Iz ornjera ukupne težine i broja proizilazi težina od 60,87 grama po jednom primjerku.

Po relativnoj i apsolutnoj gustini zauzima i na ovoj poziciji 3. mjesto u naselju. Maksimalni ulow po jedinici napora izmosi 165,20 liomada $15,60 \mathrm{~kg}$ (izračunato sa korekcijom), a postignut je u VII mjesecu, dok je minimalan a II mjesecu (20,40 komada it $1,08 \mathrm{~kg}$). U ukupnom ulovu na ovoj poziciji zastupan je sa $11,90 \%$ po broju indlvidua i $25,00 \%$ po težini.

Prisutan je u naselju u tolku éitave godine.

Pozicija 4. (Risanski zeliv) Ukupen ulov vrste Pcje!fus erythrines na ovoj poziciji iznosio je 916 primjeraka (sa korakcijom 1.099,20 komada) I težinom od 51,08 ($61,20 \mathrm{~kg}$ sa krorekcijom), iz cega proizilazi prosječns teżina po jednom primjerku od 55,43 grama. Prema relativnoj i apsolutnoj gustini zauzima 3. mjesto au naselju.

Maksimalan ulor Pagellus-a na poziciji 4. postignut je u XII mjesecu (165 komada $19,00 \mathrm{~kg}$), sto po jedinici napora izlazi 198 komada i $10,80 \mathrm{~kg}$, dok je minimalan u V mjesecu (24 lsomada se $1,26 \mathrm{~kg}$). U ukupnorn ulovu naselja na ovoj poziciji zastupan je sa $15,08 \%$ po broju i sa $26,80 \%$ po težini.

Bio je prisutan u toku citave godine.
Pozicija 5. (Tivatski zaliv) Od ukupnog ulova na ovoj poziciji na populaciju Pagellus erythrinus otpada 1.159 komada sa tez̈nom od 86,83 kg , iz čega proizilazi prosječna težina po jednom primjerku 74,91 gram.

Prema relativnoj 1 apsolutnoj gustini i na ovoj poziciji zauzima trece mjesto, što ukazuje na konstantnost i ravnomjernost distribucije ove vrste u naseljima Bokokotorskog zaliva uopsite. Maksimalni ulov ove vrste po jedinici napora postignut je u V1 mjesecu i iznosio je 224 primjerka sa težinom od 17,10 kilograma. Minimelan ulov bio je u HII mjesecu (7 komada sa težinom od $0,34 \mathrm{~kg}$).

U ukupnom ulovu na ovoj poziciji zastupan je sa $10,82 \%$ po broju Individua i sa $27,41 \%$ po teżini.

Nađ̂en je u svim mjesecima.
Pozicija 6. (Tivatsiki zaliv) Na ovoj poziciji je ukupno ulovljeno 698 primjeraka sa teinom od $44,85 \mathrm{~kg}$, iz coga proizilazi prosjecna tezina od 66,97 gramn po jednom primjerku. Po relativnoj gustini dolaai na 3, a po apsolutnoj na 4. mjesto.

Maksimalni ulov po jedinici napora postignut je po broju individua u VI mjesecu i iznosio je 145 primjeraka, a po težini u VII mjesecu sa $8,87 \mathrm{~kg}$. Najslabije je bio zastupljen po broju individua i po lez̆ini ur II mjesecu kada je po jelinici napora ulovljeno 10 komada i 0,68 kilograma.

U ukupnom ulowu na ovoi poziciji zastupan je sa 11,49\% po broju i sa $24,24 \%$ po težini.

Bio je prisutan u toku cijele godine.
Poricija 7. (Tivatski zaliv) Ukupni ulov Pagellas-a na poziciji 7. iznosio je 405 primjeraka (sa korekcijom 486,00) i sa težinom od $28,25 \mathrm{~kg}$ (sa korekcijom $33,60 \mathrm{~kg}$). Prosječna težina jednog komada iznosila je 69,34 grama.

Prema apsolutnoj i relativnoj gustini zauzima 5. mjesto na ovoj poziciji.

Maksimalni ulov bio je u VIII mjesecu i iznosio je 123 komada i $9,50 \mathrm{~kg}$ (preračunato na jedinicu napora 147,60 komada i $11,40 \mathrm{~kg}$). Najmanje je ulovljeno u II mjesecu (12 domada $0,69 \mathrm{~kg}$, ili po jedinici na-
pora 14,40 komada i $0,82 \mathrm{~kg}$). U ukupnom ulovu naselja na ovoj poziciji zastupan je sa $8,48 \%$ po broju primjeraka i sa $15,04 \%$ po tezini.

Bio je prisutan u suim lovinama na ovoj poziciji.
Pozicija 8. (Hercegnovski zaliv) Najmanji broj primjeraka Pagellus erythrinus naden je na ovoj poziciji i iznosio je ukupno 228 komada i $10,95 \mathrm{~kg}$ (sa korekcijom $\mathbf{2 7 3 , 6 0}$ komada i $13,20 \mathrm{~kg}$), iz čega proizlazi prosfečna težina od 48,02 grama. Po relativnoj i apsolutnoj gustini zauzima 5. mjesto u naselju. Maksimalan ulov postignut je u januaru i iznosio je 53 primjerka sa ukupnom težinom od $3,82 \mathrm{~kg}$ (proračunato po jedinici napora sa korekcijom $63,60 \mathrm{~kg}$ i 4,58 komada).

Minimalan ulov ove vrste u naselju bio je u IV mjesecu po broju individua, a u II i III mjesecu po težini (9 komada i $0,14 \mathrm{~kg}$), stto preračunato po jedinici napora iznosi 10,80 komada i $0,16 \mathrm{~kg}$.

Prisutan je u naselju u toku čitave godine.

Si. 14. Sexunske promjexe Pagelius erythrinus po pozicijama i mjesecima Fig. 14. Scasonal changes of Pagellus erythrinus per stations and months

b) MULLUS BARBATUS L

Biologija i ekologija ove vrste a Jadranu su neš̀o više proućavane nego kod prethodne vrite, iako ona zauzima jedno od proih mjesta pa ekonomskoj vrijednosti u bentoskim naseljima riba. Prve podatke o ovoj vrsti u Jadranu nalazimo u radovima Kothaus i Zei (1938.) iz Hrvatskog primorja, zatim Zei i Sabioncello iz srednje Dalmacije, te u radovima Zei (1942., 1949.); Bougis-Mū̀mic (1958.) iz istocne obale srodnjeg Jadrana; Scaccini (1947.) Ба zapadne obale srednjeg Jadrana. Bioloske podatke o ovoj vrsti (rastenje, spolna zrelost, mriješenje) dao je Zupanović (1961., 1963. godine), te distribuciju i ekologiju uopste ove vrste u bentoskim naseljima kanala srednjeg Jadrana (1961.). Analizirajuci podatke ekspedicije sHvara, koje je dıo Karlovac (1959.), konstatovali smo da je Mullus barbatus naden na vrlo sirokom arealu i do dubine od preko 200 metara.

U ukupnoj kolekciji sakupljenog materijala bentoskih riba u Bokokotorskom zalivu Mullus barbatus je zastupljen sa 3.629 primjeraka i ukupnom težinom od $117,75 \mathrm{~kg}$, sto predstavlja $7,08 \%$ ukupnog ulova težinski i $7,03 \%$ po broju individua. Zastupljen je na svim pozzicijama u Zalivu sa maksimalnim ulovom na poziciji 8., gdje je ulovljeno 1.063 komada i težinom od $13,65 \mathrm{~kg}$, 1 tia poziciji 5 . sa tezinom od $26,55 \mathrm{~kg}$ sa 631 komadom. Prosjećna dużina iz citavog materijala iznosila je $13,93 \mathrm{~cm}$ sa rasponom od 4 do 26 cm .

Srednje dužine po zaliyima su slijedéce:

Najsitniji i spolno neareli primjerci lovljeni su u Hercegnovskom zalivu. Samo u jectnoj lovini poćetkom avgusta ulowljeno je 627 komada Mullus-a ukupne težine $4,36 \mathrm{~kg}$. Od toga je 545 primjeraka bilo duz̃ine od svega 4-6 cm. To znaci da su ovi primjerci pripadali generaciji koja je izmriještena prije najviše nekoliko mjeseci. Kod donošenja mjera o zaštiti ribljeg fonda treba uzeti u obzir ovaj momenat. Seaccini (1947,) je konstatovao istu pojavu u srednjem Jadranu, gdje je pronašao male, pa i pelagične individue $(2-5 \mathrm{~cm})$ na dubinama od 4 do 5 metara u blizini ušca rijeka i bujica y mjesecu junu, julu i avgustu. Autor dalje navodi da u augustu ova vista prelazi iz pelagičnog na bentoski način zivota. U septembru na istim podruçjima nadeno je vrlo malo primjeraka od 9 do 10 cm . Ovo bi se skoro u potpunosti slagalo sa nasim podacima o nalazu nedoraslih primjeraka na poziciji 8. (Hercegnovski zaliv), gdje se nalaze izvori slatke vode i male dubine (desetak metara).

Slične pojave migracije ove vrste, kao i njenog prelaza iz pelagičnog na bentoski način Života konstatovali su i mnogi istraživači u drugim morima. Tako Ananiadis (1949.) navodi podstke o migriranju ove vrste iz plićih prema dubljim područjima od novembra do decembra, kada dostižu

SI. 15. Sezonske varijacije ulova Mullus baribatus u Bukokotorskom zalivu (preračunato na jedinicu napora)
Fig. 15. Seasonal variations of eatch Mullus barbatus in B. K. bay (per unit effort)
dužinu od $8,5 \mathrm{~cm}$. Gottlieb (1956.) navodi nalaz postlarvalnog stadijuma u augustu duljine 34 mm , koji pri duljini od 34 do 40 mm prelaze na bentoski način života.

Lorenz (1863.) konstatuje da se Mullus barbatus u Kvarnerskom zalivu u ljetnjem periodu približava obali, a padom temperature da se opet povlači u dublje zone.

Do slienth rezultata došli su i drugi autori kao Berg (1949.), Bougis (1950., 1952.), Vives i Suau (1955.), Planas I Vives i Suau (1935.), Andrea B. i J. Rodriguez-Roda (1951., 1952.). Prema podacima Mužinie-Bougis (1958.) Mullus barbatus postiže dužinu:

- na kraju prve godine zzivota
$10,00-11,00 \mathrm{~cm}$;
- na kraju druge godine zivota
$14,00-14,90 \mathrm{~cm}$;
- na kraju treče godine z̈ivota . . $15,60-16,00 \mathrm{~cm}$;
- na kraju četvrte godine zilvota . . $16,60-16,70 \mathrm{~cm}$.

Ovo se odnosi na mužjake, dok je rast żenki intenzivniji.
Radi upoređenja dajemo podatke po dužinskim vrijednostima iz naše kolekcije ulova ove vrste: do 10 cm nađeno je . . 621 primjeruka

od 10 do 12 cm	$"$	$"$	493	$"$
od 12 do 14 cm	$"$	$"$	405	$"$
od 14 do 16 cm	$"$	$"$	934	$"$
od 16 do 18 cm	$"$	$"$	544	$"$
od 18 do 20 cm	$"$	$"$	226	$"$
od 20 do 22 cm	$"$	$"$	122	$"$
od 22 do 24 cm	$"$	$"$	70	$"$
od 24 do 26 cm	$"$	$"$	14	$"$

Pošto u ovom radu nije bilo moguce abuhvatiti i dati detaljnije rezultate istrazivanja starosti ispitivanih vrsta, uopste unutar naselja, to ne možemo niti izvršiti sigutnu komparaciju sa stanjem ove populacije u Bokokotorskom zalivu.

Na osnovu navedenog možemo konstatovati, da se u jednom dijelu Bokokotorskog zaliva i u ljetnjem periodu nalaze velike kolicine postlarvalnih stadijuma i nedoraslih spolno nezrelih primjeraka vrste Mullus barbatus, o čemu treba voditì računa kod racionalizacije, ocinosno donosenja mjera o ograničenju ulowa bentoske ribe. Maksimalna konstatovana dužina Mullus barbatus-a u kanalima srednjeg Jadrana iznosi $29,0 \mathrm{~cm}$ za ženke i $20,0 \mathrm{~cm}$ za mužjake, a maksimalna dužina na otvorenom moru $21,0 \mathrm{~cm}$ (Zupanović 1963.). Maksimalna dužina ove vtste koju smo konstatovali u Bokokotorskom zalivu iznosila je 26 cm .

Mriješćenje ove vrste utvrdeno je za kanale srednjeg Jadrana od aprila do jula sa najvecim intenzitetom u maju i junu. Prema našim opačanjima mriješéenje ove vrste vrši se izgleda nešto kasnije, tj. u julu 1 avgustu.

Pozitivni korelacioni koeficijenti koje smo dobili izmedu Mullus barbatus te endofaune ($\mathrm{r}=0,5111$) i temperature ($\mathrm{r}=0,2481$) su varija-ciono-statisticcki neopravdani (zbog malog broja varijanata).

Sezonske promjene abundancije Mullus barbatus prikazane su na SL. 18.

```
\rho=\frac{\sumMxVy-ANANMy}{NO+\sigmay}-0.5m
mr = 焦N}=0 369
EPR = 0.674.5}\cdot\frac{1-\mp@subsup{\mu}{}{2}}{\sqrt{}{\pi}}=0.249
PIMf............5111F0,3694
PrEPN.......... 0.577H2 0. 2491
```


Si. 16. Korelacija izmedu endofaune i br, individua Mullus barbatus L.
Fig. 16. Correlation between endofauna and number of individ, Mullus barbatus


```
EAr-0.5P4,5 夝}{}{2}}{\sqrt{}{2}}=0.8229
```



```
FHEP=..........24ayt a && 29
```


S1. 17. Korelaclja izmedu temperature i ulova Mullus barbatus L.
(po broju individua)
Fig. 17, Correlation betwecn temperature and catch of Mullus barbatus L. (number of inclivid.)
Maksimalni ulov u Zalivu postignut je u IX mjesecu po težini i po jedinici napora ($3,50 \mathrm{~kg}$), a u VIII po broju primjeraka (147,42 komada). Ovaj maksimum po broju je posljedica imigracije u naselju velikog broja sitnih postlarvalnih juvenilnih stadijuma. Minimalni ulov u Zalivu bio je is XI mjesecu.

U svim mjesecima u toku godine ova vrsta bila je prisutna u Bokokotorskom zalivu.

Distribucija populacije Mullus barbatus L. po pozicijama
Pozicija 1. (Kotorski zaliv) Na ovoj poziciji ulovljeno je u toku istraživanog ciklusa ukupno 230 komada sa težinom od $10,85 \mathrm{~kg}$, sto u odnosu na ukupan ulov na ovoj pozicijt iznosi $2,97 \%$ po broju individua i $4,46 \%$ po težini. Iz odnosa ukupnog broja 1 tez̃ine proizilazi prosjek od 47,1 gram po jednom primjerku. Po relativnoj i apsolutnoj gustini zauzima 6. mjesto u naselju. Maksimalni ulov po jedínici napora (težinski t po broju individua) postignut je u januaru i iznosio je 116 komada sa $5,29 \mathrm{~kg}$, a najmemji u XI mjesecu (5 koniada sa $0,22 \mathrm{~kg}$).

Prisutan je kroz citavu godinu.
Pozieija 2. (Kotorski zaliv) Na ovoj pozicijt ukupno je konstatoveno 312 primjeraka sa težinom od $15,36 \mathrm{~kg}$, iz ěega proizilazi težina po jednom primjerku od 48,8 grama. Po reletivnaj gustini zauzima 4., a po apsolutnoj 5. mjesto u naselju.

Maksimalni ulov postignut je u IX mjesecu, a iznosio je 81 komad sa teřinom od $3,55 \mathrm{~kg}$ po jedinici napora.

Nije nađen jecino u VIII mjesecu.
Pozicija 3. (Fisanski zaliv) Ukupno je ulovljeno 205 (sa korekcijom 246) primjeraka i tezzinom od 11,42 (sa korekcijom $13,20 \mathrm{~kg}$, što iznosi 55,7 grama po jednom primjerku).

Maksimalni ulov postignut je po broju individua u VII (38 komada), a po tex̌ini u VIII mjesecu ($1,80 \mathrm{~kg}$) po jedinici napora.

Minimalni ulov po jedinici napora postignut je u XI mjesecu - 3 komada (sa korekcijom 3,60) i $0,13 \mathrm{~kg}$ (sa korekcijom $0,18 \mathrm{~kg}$).

Prema relativnoj i apsolutnoj gustini u naselju ova vrsta zauzima na ovoj poziciji 5 . mjesto.

Bio je prisutan u svim lovinama.
Pozicija 4. (Risanski zaliv) Na ovoj poziciji ukupno je pronađeno 178 (sa korekcijom 213 primjeraka) sa tezzinom od 9,16 (sa korekcijom $10,80 \mathrm{~kg}$), iz čega proizilazi prosječna težina od 51,4 grama. Maksimalni ulov postignut je III mjesecu i iznosio je 54 komada i $3,08 \mathrm{~kg}$. Minimalni ulov ove vrste bio je u V mjesecu (3 komada i $0,17 \mathrm{~kg}$). Prema relativnoj 1 apsolutnoj gustini zauzima 5 . mjesto u naselju,

Nije naden jedino u X mjesecu.
Pozicija 5. (Tivatski zaliv) Na ovoj poziciji pronasli smo ukupno 631 primjerak ove vrste sa težinom od $26,55 \mathrm{~kg}$, što po jednom primjerku iznosi $41,9 \mathrm{~g}$. U ukupnom ulovu ućestvuje sa $8,07 \%$ komada i $8,42 \%$ po težini. Maksimalni ulov po broju primjeraka i jedinici napora postignut je u VIII mjesecu (112 komada), a u VI mjesecu po teäini ($6,50 \mathrm{~kg}$). Minimalno učeste ove vrste a lovini bilo je u jamuaru. Po relativnoj i apsolutnoj gustini zauzima 5. mjesto u naselju.

Bio je prisutan u toku citave godine.
Pozicija 6. (Tivatski zaliv) Ukupan ulov ove vrste na ovoj poziciji iznosio je 481 primjerak sa težinom od $15,42 \mathrm{~kg}$, sa učešcem od $7,92 \%$ u naselju po broju i $83,33^{3 \%}$ po težini. Prosječna težina primjeraka iznosila
ie 18,3 grama. Maksimalan ulov po jectinioi napora postignut je u VII mjesecu ($97 \mathrm{komada)}$ sa težinom od 2,88 kilograma. Minimalna lovina bila je u II mjesect (14 lkomada) sa 0,48 kilograma. I na ovoj poziciji zauzima 5. mjesto u naselju po relativnoj i apsolutnoj gustini.

Naden je u svim lovinama u toku godine.
Pozicija 7. (Tivatski zaliv) Ukupni ulov Mullus berbatus sa pozicije 7. iznosi 529 (sa korckcijom 634,80) primjeraka, težine od $15,34 \mathrm{~kg}$ (sa korekcijom 18,60), što u cdnosu na ukupan ulov na ovoj pozielji predstavlja $3,05 \%$ po težini i $10,87 \%$ po broju. Prosječna težina primjerka iznosi 29 grama. Maksimalni ulov postignut je u I mjesecu (164 komada, $3,90 \mathrm{~kg}$), sto po jedinici napora iznosi 175 komada i $4,68 \mathrm{~kg}$, a minimalan u V mjesecu. Prema relativnoj \ddagger apsolutnoj gustini zauzima 3. mjesto u naselju na ovoj poziciji.

Bio je prisutan u svim lovinama ut toku godine.
Pozicija 8. (Hercegnovski zaliv) Po broju ulovljenih primjeraka Mullus barbatus ova pouicija dolazi na prvo mjesto u čitavom Bokokotorskom zalivu. Ulovljeno je 1.063 (sa korekcijom $1.275,60$) komada su tezzinom od 13,65 (sa karekcijom $16,20 \mathrm{~kg}$), tako da u ukupnom ulovu na ovoj poziciji ućestvuje sa $25,61 \%$ po broju individua i sa $13,25 \%$ po težini. Iz ukupnog broja itežine proizilazi prosjek od 12,8 grama po jednom primjerku, što ukazuje na činjenicu da su lovljeni pretežno sitni primjerci.

Karakteristicno je, nadalje, da je maksimalan ulov od 627 primjeraka postignut u avgustu, sto preračunato na jedinicu napora iznosi 752,40 individua skupne težine od svega $3,10 \mathrm{~kg}$, ili 4,12 grama po jednom primjerku. Drugi maksimum postignut je u II mjeseeu - 193 komada, - (4,53 kg), što preračunato po jedinies napora iznosi 231 primjerak ukupne težine od 5,49 kilograma. Težina po jednom primjerku drugog maksimuma iznosi 23,2 grama. Pored ostalog, 4 augustu je ulovljeno 545 primjeraka od 4 do 6 cm , a to znači kratko vrijeme nakon mrijestéenja 1 u dobu prelaza iz pelagiěnog u bentoski načìn żivota. Prema naǩim nalazima ovo bī bila bentoska vrsta sa najvecím radiusom godišnje migracije u Bokokotorskom zalivu. Po apsolutnoj gustini dolazi na prvo mjesto, a po relativnoj na treée sto potvrđuje njenu nestalnost u naselju. Possto se radi a ekonomskoj kvalitetno visoko vrijednoj populaciji, potrebno je osigurati njenu zasktitu 4 Hercegnovskom zalivu u doba masovne pojave podmlatka.

Minimalni ulov bio je u maju (3 komada $10,11 \mathrm{~kg}$).
Naden je u svim lovinama is toku godine.

$$
p \cdot 2
$$

P. 4

Sl. 18. Sezonske promjene Mullus barbutus po pozicijama 1 mjesecima Fig. 18. Seasonal changes of Mullus barbatus per stations and months

c) SMARIS VULGARIS C. V.

Morfologiju ove vrste u Jadranu abradio je Zei (1941.) Isti autor (1949.) proučavao je njena jaja i larvalne stadije. Osim navedenih ne postoje drugi posebni radovi o biologiji i ekologiji ove vrste u Jadranu, zuzev autora i radova u kojima se tretiraju bentoska naselja uopste i u kojima Smaris vuigaris kao populacija vlazi u njihov sastav. Radi se o istraživanjima bentoskih naselja riba u Jadranu od strane autora koje smo naprijed citirali (Sabioncello, Zei, Z̈upanović, Kotthaus i drugi).

Analizirajuci distribuciju ove vrste sa 167 lokaliteta iz preko 300 kočarskih lovina Jugoslovenske ekspedicije sHvare (Korlovac 1959.) konstatovali smo njenu siroku rasprostramjenost duž citave jugoslovensike obale U odnosu na batimetrijsku raspodjelu pokazuje takode siroki areal, jer je lovljena i do dubina od preko 200 metara (u južnom Jadranu). Ako to uporedimo si dubinama od par desetina metara u Bokokotorskom לalivu, proizilazi da Smaris vulgaris spada u euribatne bentoske vrste.

Prema ukupno sakupljenom materijalu Smaris vulgaris je najobilnije zastupana populacija u Bokokotorskom zalivu. Za period u kojem su vuŠena istraživanja ukupno je ulovljeno 16.668 primjeraka i tez̃inom od $306,96 \mathrm{~kg}$, sto predstavlja $18,47 \%$ ulova po težini i $32,33 \%$ po broju individua. Prosječna težina jednog primjerka iznosi 18,41 gram. Prosjek ulova po jedinic napora u citavom Zalivu iznosi $4,24 \mathrm{~kg}$ i 220,73 komada. Tidividue ove vrste prisutne su kroz čitavu godinu na svim pozioifama. Najbolje su zastupani na poziciji 2., gdje ukupan ulor iznosi 3.314 primjeraka sa težinom od $63,53 \mathrm{~kg}$, što predstavlja $37,60 \%$ po broju i $22,77 \%$ po teřini, dok je minimalni ulov postignut na pozicijama 7. i. 8. (na poziciji 3. komada 872 , a na pozioiji 7. kilograma 12,46).

Maksimalna pojava vrste Smarit vilgaris utvricna je u VIII i IX mjesecu, s tim da se nalazi u Zalivu kroz citavu godinu u relativno velikim kolicinama, sa minumalnim nalazom u XI mjesecu.

Smaris vulgaris pokazuje pozitivmu korelaciju sa endofaunom ($\mathrm{r} \pm \mathrm{mr} \ldots 0,7152+0,2442$ i $\mathrm{r}+$ E.P.r $\ldots 0,7152 \pm 0,1647$), kao i slabu pozitivnu korelaciju sa temperaturom, koja varijaciono-statisticki nije opravdana

SI. 19. Sezonske promjene populacije Smaris vulgaris a Bokokotorskom zalivu (prerac̃unato na jedinicu napora)
Fig. 19. Scasonat changes of population Smaris vulgaris in B. K. bay (per unit effort)

ar $=\frac{r-r^{\prime}}{\sqrt{\pi}}=0.2 \sin 2$
$\angle P R=0.6 P 45-\frac{k \mu^{2}}{\sqrt{n}}-0.1847$

PSERP-
a. $7152+0.1647$

SI. 20. Korelacija izmedu endofaune i ulova Snaaris vulgaris (po br. komada) Fig. 20. Correlation between endofauna and catch Smaris vulgaris (individ.)


```
PsEP, -......... a MPRYF a.109y
```


S1. 21. Korelacija izmedu temperature i ulova Smaris vulgaris CV. (po br. Individua) Fig. 21. Correlation between temperature and catch Smaris vulgaris (individ.)

Distribucija populacije Smaris vulgaris C. V. po pozicijama

Pozicija 1. (Kotorski zaliv) Ukupni ulov na ovoj poziciji u toku istraživanja iznosio je 2.501 primjerak sa težinom od 38,08 kilograma. Iz ovog omjera proizilazi teăina od 15,22 grama po jednom primjerku. U ukupnom ulovu na ovoj poziciji ova vrsta je zastupljena sa $29,76 \%$ po broju individua i sa $15,67 \%$ po tezini.

Maksimalan ulov po jedinici napora postignut je u VIII mjesecu (836 komada, $11,00 \mathrm{~kg}$), a minimalan u X mjesecu (29 komada, $0,40 \mathrm{~kg}$). Prema relativnoj i apsolutnoj gustini zauzima 2, mjesto u naselju (tj. poslije Paracentropristis hepatus). Prosjecni ulov po jedinici napora iznosio je (186,45 komada i $3,45 \mathrm{~kg}$).

Prisutna je kroz čitavu godimu.
Pozicija 2. (Kotorskt zaliv) Maksimalan ulow ove vrste u citavom Zalivu postignut je na ovoj poziciji i iznosio je 3.314 primjeraka sa težinom od $63,53 \mathrm{~kg}$. U ukupnom ulovu na ovoj poziciji ova vrsta je zastupljena sa $37,60 \%$ po broju primjeraka i sa $22,77 \%$ po težini. Prosjcc̄na teãina jednog primjerka iznosi 19,17 grama. Najveci ulov po jedinici napora postignut je u IX mjesecu (935 komada, $18,70 \mathrm{~kg}$), a najmanji u V mjesecu ($93 \mathrm{ko-}$ mada, $1,78 \mathrm{~kg}$). Po apsolutnoj gustini zauzima 1., a po relativnoj 2 . mjesto u naselju.

Prisutna je kroz citavu godinu.
Pozicija 3. (Risanski zaliv) Po relativnoj i apsolutnoj gustini Smaris vulgaris zauzima 1. mjesto. Ukupno je nadeno 2.574 primjerka (sa korekcijom 3.088) sa težinom od $55,77 \mathrm{~kg}$ (sa korekcijom $63,00 \mathrm{~kg}$). U ukupnom ulovu na ovoj poziciji zastupljena je sa $47,60 \%$ po broju i $33,40 \%$ po težini. Prosjec̆na tez̈ina primjerka iznosi 24,47 grama. Maksimalni ulov po jedinici napora postignut je u III mjesecu (864 komada, $17,64 \mathrm{~kg}$), \& minimalni u VI mjesecu (51,60 komada, $1,70 \mathrm{~kg}$).

Prisutna je kroz čitavu godinu.
Pozicija 4. (Fisanski zaliv) Na ovoj poziciji ukupno je ulovljeno 2,172 primjeraka sa težinom od $44,00 \mathrm{~kg}$ (sa korokeijom $2.206,40$ komada i $52,80 \mathrm{~kg}$). Prosječna težina primjeraka iznosi 23,93 grama. U ukupnom ulovu na ovoj poziciji učestruje sa $35,77 \%$ po broju individua, a sa $22,68 \%$ po težini. Maksimalni ulov ove vrate na ovoj pozicuiji po fedinici napora bio je u III mjesecu (584,40 komada, $10,80 \mathrm{~kg}$), a minimalnt u VI mjesecu (151,60 komada, $1,70 \mathrm{~kg}$). Po relativnoj i apsolutnoj gustini stoji na 1 . mjestu.
"Prisutna je u naselju tokom citave godine.
Pozicija 5. (Tivatski zaliv) Smaris vulgaris na ovoj poziciji zauzima 1. mjesto po relativnoj i apsoluthoj gustimi. Ukupan ulov u toku godine iznosio je 2.537 komada sa težitom od 47,64 kilograma. U ukupnom materijalu sa pozicije učestvuje sa $37,45 \%$ po broju individua it sa $15,22 \%$ po težini. Iz omjera ukupne težine i broja primjeraka proizilaai prosje厄̃na težina od 18,77 grama po jednom komadu.

Prisutna je na ovoj poziciji u toku čitave godine.
Maksimalni ulov po jedinioi napora postignut je u XII mjesecu po broju komada (480) i u IX po broju kilograma (8,40), a minimalni u III mjesecu (16 komada, $0,35 \mathrm{~kg}$).

Pozicija 6. (Tivatski zaliv) Na ovoj poziciji Smaris vulgaris zauzima 1. mjesto po apsolutnoj gustini, a 2. po relativnoj. Ukupan ulov iznosio je 1.794 individue sa težinom od $33,33 \mathrm{~kg}$, sto u odnosu ne cjelokupni materijal predstavlja $29,54 \%$ po broju i $18,00 \%$ po težini.

Prosječna težina jednog primjerka iznosi 18,57 grama.
Maksimalni ulov po jedinici napora postignul je u III mjesecu (577 komada, $10,50 \mathrm{~kg}$), a minimalni u XII mjesecu (78 komada, $1,45 \mathrm{~kg}$).

Prisutna je u naselju u toku čitave godine.

$$
\text { P. } 4
$$

P- 6

P-8

S1. 22. Sezonske promjene Smaris vulgaris po pozicijama 1 mjesecima Eig. 22. Seasonal changes of Smaris vulgaris per stations and months

Pozicija 7. (Tivatski zaliv) Ukupan ulov ove vrste na ovoj poziciji iznosio je 904 primjerka (sa korekcijom 1.128 komada) i težinom od $12,46 \mathrm{~kg}$ (sa korekcijom $15,00 \mathrm{~kg}$), što po jednom primjerku predstavlju težinu od 13,29 grama. U ukupnom ulovu na ovoj poziciji Smaris vulgaris učestvuje sa $18,94 \%$ po broju individua i $6,62 \%$ po teżini. Po relativno. gustini zauzima 1. mjesto, a 2. po apsolutnoj. Maksimalni ulov postignui je po broju u VI mjesecu (191 komad), a po te§ini u IV ($3,23 \mathrm{~kg}$), dok je minimalan po broju u VIII mjesecu (21 komad), a po težini u XII mjesecu ($0,02 \mathrm{~kg}$).

Prisutna je u naselju kroz citavu godinu.
Pozicija 8. (Hercegnovski zaliv) Prema relativnoj gustini dolazì na 1. mjesto, a prema apsolutnoj na 2. Na ovoj poziciji su ukupno nadena 872 primjerka (sa korekcijom 1.046) u težini od $15,15 \mathrm{~kg}$ (sa korekcijom $18,00 \mathrm{~kg}$). Maksimalni ulov po jedinici napora postignut je u XII mjesecu (382,80 komada, $7,80 \mathrm{~kg}$), a minimalan u II mjesecu (10 komada, $0,08 \mathrm{~kg}$). U ukupnom ulovu na ovoj poziciji Smaris vulgaris uěestvuje sa $21,01 \%$ po broju i $14,70 \%$ po težini.

Prisutna je u svim lovinama na ovoj poziciji.

d) MERLUCCIUS VULGARIS FLEM.

Merluccius vulgaris je izrazito euribatna vrsta is Jadranskom moru. Zbog svoje široke rasprostranjenosti i visokog kvaliteta mesa predstavlja ekonomski najinteresantniju vrstu u eksploataciji bentoskih ribljih naselja.

Analizirajuci podatke ekspedicije "Hvar» (Karlovac 1959.), konstatovali smo da je ova vrsta pronađena na swim istraživanim podrućjima is Jadranskom moru. Pomenuta ekspedicija istražila je ukupno 167 lokaliteta sa preko 300 kočarskih lovina. Belloc (1929.) i Russo (1928.) nevode dia je Merluccius vulgaris nejfrekventniji na dubinama od 300 do 500 metara, ali da se nalnzi i na manjim dubinama. Prema podacima Kirinčita i Lepetića (1955.) ova vrsta je nađena na svim dubinama od 100 do 800 metara, s tim što veličina raste pravilno i proporcionalno sa povéaanjem dubine (srednje dužina na 100 metara iznosila je $53,6 \mathrm{~cm}$, a na 800 melara $72,5 \mathrm{~cm}$). Najveći primjerak bio je dug 95 cm . Pretpostavlja se da se sa nastupanjem prve spolne zrelosti seli iz plitkih uzobalnih područja i kanala u dublje zone, kao i da mladunci nakon mujješcenja migriraju prema obali, kanalima i zalivima. Belloc (1929.) Russo (1928.) Zei i Sabioncello (1940.), Z̈upanovič (1961.), Pasquini (1926.), Karlovac (1959.) i dr. proučavali su ishranu ove bentoske vrste.

Lako Merluccius vuigaris ne zauzima prva mjesta po apsolutnoj i relativnoj gustini individua u naseljima Bolokotorskog zaliva, zbog svog kvaliteta u ekonomskom smislu predstavlja odredenu vrijednost.

U našem materijalu ova vrsta je zastupljena sa 278 primjeraka i težinom od 33,78 kilograma. Prosječna velicina ulovljenih primjeraka iznosila je $24,35 \mathrm{~cm}$ sa rasponom od 12 do 47 cm .

Prvu spolnu zrelost mužjaci Merluccius vulgaris postižu pri dužini od 22 do 30 cm (Zei 1949.), a ženke oko 30 cm , nakon čega se povlače u dublja područja.

U našim lovinama nismo pronaskli spolno zrele primjerke. Raspodjela viste Merluccius vulgaris prema dužini:

Zaliv Primjeraka Sa dužinom Srednja vrijed. Kotorski 53
Risanaski: 81
Tivatski 98
Hercegnovski
46
Sezonske varijacije ulova Merluccius vulgaris prikazane su na SL. 23. Najvéa težina po jedinici napora postignuta je u X mjesecu, a po broju primjeraka u VI. Nije naden jedino u XI mjesecu.

Izmedu ulova vrste Merluccius vulgaris po težini i temrepature pokazuje se visoka pozitivna korelacija: (r $+\mathrm{mr} \ldots 0,9363 \pm 0,0372$ i $\mathrm{r} \pm$ E.P.r. . 0,9363 $\pm 0,0250$).

S1. 23. Sezonske varijacije ulova Merluccius vuigaris u Bokokotorskom zalivu (preraćumato na Jedlinicu napora)
Fig. 23. Sedsonal variations of cach Merluccius vulgaris in B K. bay (per unit effort)

Na poziciji 1. (Kotorski zaliv) prema apsolutnoj gustini ova vrsta zauzima 18, a prema relativnoj 15. mjesto. Zastupljena je u ovom naselju sa ukupno 20 primjeraka i terinom od $4,38 \mathrm{~kg}$, koja po jednom primjerku iznosi 217 grama.

Maksimalni nalaz bio je u VIII mjesecu (8 komada sa težinom od 2 kg).

Nije naden u VI, X, XI, i XII mjesecu.
Na poriciji 2. (Kotorski zaliv) zauzima 12. mjesto po apsolutnoj I relativnoj gustini. Ukupno je nađeno 33 primjerka sa težinom od $5,13 \mathrm{~kg}$,
što po jednom primjerku iznosi 156 grama. Maksimalni ulov je postignut u V mjesecu (6 komada, $1,59 \mathrm{~kg}$).

Nije konstatovan jedino u III i VI mjesecu
Na poziciji 3. (Risanski zaliv) zauzima 10. mjesto po relativnoj i apsolutnoj gustini u naselju. Zastupljen je sa ukupno 42 prinnjerka u tezini od $3,56 \mathrm{~kg}$, što po jednom primjerku iznosi 85 grama.

Najbolje je zastupljen u naselju ove pozicije u VI mjesecu po broju (33 komada), a u X po težini ($1,45 \mathrm{~kg}$).

Nije nađen u IV, VII, VIII i XI mjesecu.
Na poziciji 4. (Risanski zaliv preristavljen je 11. mjestom po apsoIutnoj i relativnoj gustini. Ukupan ulov na ovoj poziciji iznosio je 39 primjeraka sa težinom od $2,48 \mathrm{~kg}$, što iznosi 64 grama po jednom primjerku.

Maksimalna zastupljenost u naselju bila je u III mjesecu po broju individua (24 komada), a u VII po terini ($1,04 \mathrm{~kg}$).

Nije bio zastupljen u lovinama iz IV, Vi X mjeseca:
Na poziciji 5. (Tivatski zaliv) zauzima 13. mjesto po relativnoj i apsolutnoj gustini u naselju. Ukupan ulov iznosio je 34 primjerka sa težinom od $5,94 \mathrm{~kg}$, što iznosi po jednom primjerku 175 grama. Maksimalna zastupljenost u naselju konstatovana je u VI mjesecu (11 komada, $1,84 \mathrm{~kg}$).

Nije nađen u II, III : IV mjesecu.

SI. 24. Korelacija izmedu temperature i ulova Merluccius vulgaris Fiem. (po težini)
Fig. 24. Correlation between temperature and catch of Merluccius vulgaris in B. K. bay (weight)

S1. 25. Sezonske promjene Merluccius vulgaris po pozlcijama 1 mjesecima Fig. 25. Scasonal changes of Merluccius vulgaris per stations and manths

Na pozicij̉i 6. (Tivatski żaliv) ulowljeno je 29 primjeraka sa težinom od 5,95 kilograma. Zauzima po apsolutnoj gustini 11. mjesto, a po relativnoj 13. Prosječna težina primjerka iznosila je 170 grama. Maksimalni uiov je bio u VI i VIII mjesecu, a po težini u X mjesecu.

Nije bio pronaden u II, III, IV i XII mjesecu.
Na poziciji 7. (Tivatski zaliv) zauzima 12. mjesto po relativnoj, a 14. po apsolutnoj gustini. Ulov na ovoj poziciji iznosio je 35 komada sa težinom od $3,82 \mathrm{~kg}$, sto po jednom primjerku iznosi 109 grama.

Malksimalna zastupljenost po težini bila je u XII mjesecu（ $2,05 \mathrm{~kg}$ ）， a u VII po broju primjeraka（20 komada）．

Njje naden uI I，II，V，VI i XI mjesecu．
Na poziciji 3．（Hercegnovski zaliv zauzima 10．mjesto po relativnoj i 11．po apsolutnoj gustini sa ukupnim ulovom od 46 komada i težinom od 3，52 kilograma．Prosjeẽna tezina primjeraka iznosila je 77 grama．Maksi－ malna zastupljenost je bila u IV mjesocu po težini i u XII po broju indi－ vidua．

Nije naden u II i III mjesecu．

VI PROCJENA ABUNDANCIJE I STEPENA OPTIMALNE EKSPLOATACLJE BENTOSKIH NASELJA FIBA I JESTIVIH AVERTEBRATA U BOKOKOTORSKOM ZALIVU

Pracenje ulova po jedinici napora（po jednom satu，danu，ribolovnoj jedinici i sl．）je u praksı jedini pokazatelj kojim se utvrduje i određuje： a）gustina naselja bentoske ribe i jestivih avertebrata i b）intenzitet eksplo－ atacije ribolovnih područja．Ako je ulow po jedinici napora konstantan（ili raste）zaključujemo da se područje elssploatiše u racionalnim granicama． Ako，pak，ulov po jedinici nappora konstantno Ivantitativno opada，znači da se podruěje preintenzivno eksploatise， tj ．da nastupa tzv，aprelove， Ovo opadanje，osim u smanjivanju ukupne težine ulova po jedinici na－ pora，odrazava se u praksi i u smanjenju prosječnih veličina odnosno te－ zina individua pojedinih vista koje ulaze u sastav naselja，pa i u promje－ nama brojnosti individua komponentrit vista．Opadanje ulova po jedinici napora u nekim nasim priobalnim područjima konstatovano je od strane vise autora：D＇Anconna（1926．），Kothaus i Zei（1988．），Županovie（1953．） i dr．Kad se takvo oparlanje spusti ispod određenog nivoa，u tom slučaju ribolov treba ili povremeno zabranjivati，ili ograničavati（broj ribolovnih jedínica，intenzitet njihova rada ili veličinu oka na mreži），ili pak na drugi način regulisati，ukoliko se želt očuvati naselje od krajnjeg osiromašenja， a dalji ribolov od nerentabilnosti．

Pošto u Bokokotorskom zalivu nikada nije lovljeno kočom，to ne raspolažemo nikakvim ranijim podacima o ulovu ni o mogućnostima i kretanjima ulova po jedinici napora．Zbog toga，kod izračunavanja kva－ tíativno－kvantitativnog stanja naselja u ovom Zalivu služiciemo se samo našim podacima o ulovu po jedinici napora，jer kako smo ranije napome－ nuli，taj ulov ce u našem slučaju objektivno bolje reprezentovati samo naselje u Zalivu，tj．prikazati stvarnu sliku njegovog stanja i strukture （zatvorenost Zaliva，sastav naselja i dr），nego na nekom drugom otvorenom područiv．

Odre九tivanje looeficijenta ulova mreže je najteži problem koji krije moguénast većh gres̆aka．Koliki je taj koeficijenat，tj．koliko mrez̀a（koča） ulovi ribe na određenoj površini，od stvarnog stanja（koliôine）koje sc na toj povrsini nalazi，postoje razna mislljenja i neslaganja pojedinih istra－ Żivača．Míe cemo u naぶim predraěunima upotrebiti koeficijenat 0，25，jer
smatrumo da je najprikladniji i najrealniji u našem slučaju. To znači da pretpostavljamo da je nas̆a mreźa lovila 0,25 , odnosno 25% od ukupnog broja (težine) svih bentoskih riba koje su se nalazile ma površini koju je zahvatila u odredenom vremenu povlačenja. Do ovog koeficijenta dos̃ao je njemački istraživač Heincke (1913.) ne baai izvršenog eksperimenta, koji se sastojao u ulovu, markiranju 1 ponovnom puštanju u more velikog broja iveraka - vrste listova - (Pleuromectes platessa). Nakon puštanju u more markiranih riba na istom području je lovio kočom i ulovio 25% od pustenih i markiranih riba. Autor je, kaio što vidimo, eksperimentisao na vrsti Pleuronectes platessa, koja je dzrazito bentoska riba. Pošto se u našem slučaju radi o bentoskim nascljima, koja su sastavljena od mnogo vrsta (populacija) od kojih su neke vise, a neke manje vezane za samo morsko dno, to je vjerovatno koeficijenat ulova u nas̃em slučaju nesto niži. Ovu eventualnu razliku nećemo uzimati u cbzir, veé je ostavljamo kao faktor sigurnosti kod davanja prve ocjene o granicama moguće eksploatacije Bokokotorskog zaliva ribolovom koc̃um. Ovim radom, naime, namjeravamo dati i prve konkrelne orljentacione podatke o koliénama koje je moguće godišnje loviti u Bolkokotorskom zalivu stim, da se osigura osnovni fond koji je potreban za reprodulkeiju i obnovu (optimalni racionalnii ribolov). Ovo je prvi pokušaj kod nas da se na osnovu istraživanja bentoskih naselja daju konkretni podaci o moguénostima đ granicama efrsploatacije odredenog područja. Nadalje, u ovom radu nismo uzeli u abiar minimalne količine bentoskih riba koje se love drugim ribolovnim stedstvima, a koja su manje efektivna dá ribolova kuéom.

Kod određivanja jedinice povrگine koju koča zahvatí prl povlaćenju u vremenu od jednog sata potrebno je bilo doznati lovnu sirinu zahvata mreže u moru, jer je duz̈ina staze poznate i iznosi dvije nauticke milje (= brzina voz̆nje, odnosno povlačenje mreže za jedan sat). Lavnu Sirinu mreže dobili smo direktnim mjerenjem za vrijeme rada mreže u moru. Ovo je postignuto na taj nac̃in, što smo mrez̃ı vakli na plitkom i raynon: terenu, te za to vrijeme ronjenjem pomoću podvodnih maski izmjerili odstojanje izmedu krila mreže i odstojanje između dasaka s̈irilica. Kao posebne obračunske jedinjce uzeli smo éetiri unutraక̆nja zaliva (Kotorski, Risanski, Tivatski i Hercegnovski). Za vrijednost ulova na jedinicu povrsiine u svakom zalivu upotrebili smo vrijednosti iz godisinjeg prosječnog ulova po jedinici napora sa svake pozicije u dotičnom zalivu posebno. Srednja vrijednost tog prosječnog alova predstavija vrijednost ulova na jedinicu površine u tom zalivu.

Kod procjene ukupne kolic̈ंne bentoskih riber u mjesovitom naselju Zaliva, odnosno u njegovim unutrašnjim zalivima, nismo uzimali u obzir površine unutar izobata 0 i 20 metara, gdje smatramo da ne bi trebalo niti moglo vršiti kočarenje.

1) Proračun zahvata mreže

Kod obračuns stvarne gustine (veličine) naselja u Bokokotorskom zalivu, possli smo od naprijed pomenute i poznate pretpostavke da je ulov po jedinici napora (od jednog sata povlačenja) proporcionalan gustini, tj. t $=\mathrm{k} \mathrm{G}$
g - ulov po jedinici napora
$\mathrm{G}=$ gustina naselja
$\mathrm{k}=$ konstanta (ribolowni koeficijent)
Pos̆to je ulov po jedinici napora i vremena (tj. kroz jedan sat) predstavljao uvijek jednaku izlovljenu površinu, koja je ovisna longitudinalno od brzine voz̃nje broda (povlačenja mreže) a transversalno o kirini zahvata mreže, to prednju jednacinu možemo napisati i ovako: kG $=\mathrm{a}$, gdje >a« predstavlja ulov sa *n* površine koju mreža obuhvati u jednom potezu (1 sat povlačenja).

Dužina staze povlačenja mreže za 1 sat iznosila je dvije nautičke milje ($=$ brzina broda), sto pretvoreno u metre iznosi okruglo 3.710 me tara.

Sirina zahvata mrez̀e, koja je dobivena direktnim mjerenjem za vrijeme rada mreže u moru, iznosi 10 metara.

Prema tome, ixlovljena površina u jednom povlačenju bila je $3.710 \times 10=37.100 \mathrm{~m}^{2}$, pa možemo reci: ulov po jedinici napora u naşem slučaju predstavlja količinu ribe, koja se dobije izlovljavanjem povišine od $37.100 \mathrm{~m}^{2}$ u jednome satu vrsenja ribolova.

Ako se na površini sa* ($37.100 \mathrm{~m}^{*}$) ulovi x komada i kilograma ribe te ako pretpostavimo da su naselja ravnomjerno raspoređena u Zalivu, proizilazi da bi se na bilo kojoj veéoj povrsini ulovilo sne puta vise Na toj osnovi izraćunali smo hipotetske ulove na 1 km , odnosno na ukupnim povrsinama po zalivima dubljim od izobate od 20 m , sto prikazujemo u slijedećoj tabeli:
2) Irračunavanje hipotetskog ulova po zalivima

Ribolovno područje	Povist. ispod izobate bd 20 m u km ${ }^{2}$	Prosj. uloy na povrsini od $37.100 \mathrm{~m}^{z}$ (a)		```Alpotetski ulov na 1 km (a1) kom kg```		Hipotetski ulot po zalivima a	
Kotorski	12,208	871^{-}	25,17	23.477	678,436	286.607	8,282
Risanski	5,571	742	21.83	20.000	588,400	111.420	3,277
Tivatski	23,971	676	24,77	18.247	6067,654	+37.398	16,004
Hercegnoviki	21.948	477	13,06	12.857	350,202	282.185	7,686
Ukupno:	63,698					1,117.610	35,249

U naprijed navedenom pregledu dobili smo hipotetske ulove u unutrašnjim zalivima, a to znači ulov koji bi se dobio ako bi se mrežom
u jednom potezu obuhvatila citava povrsina svakog zaliva ispod jzobate od 20 metara. Iz navedenog proračuna proizilazi da bi hipotetski ulov kočom u citavom Bokokotorskom zalivu ispod irobate od 20 metara, ij. na površini od $63,698 \mathrm{~km}^{2}$ iznosio 1,117.610 komada bentoske ribe i jestivih avertebrata u ukupnoj težini od 35,249 lcilograma.

5) Izračunavanje stepena eksploatacije

Na osnovu dobivenog hipotetskog ulova po zalivima i koeficijenta ulova od $0,25 \%$, a kojemu je ranije bilo govora, dobicemo aproksimativnus gustinu naselja u Bokokotorskom calivu prema navedenoj formuli, koju možemo napisati ovako:

$$
\mathrm{G}=\frac{\mathrm{a}}{\mathrm{n}} \mathrm{k}
$$

gdje G predstavlja gustocu, a hipotetski ulov na povesini od $\mathrm{n}=\mathrm{km}^{2}$ $\mathrm{i} » \mathrm{k} *$ ribolovni koeficijent.

Ako sada u gornjoj jednacini zamijenimo vrijednosti dobivenih hipotetskih ulova po zalivima i koeficijenat $(0,25)$ dobicemo procjenu stvarnog stanja (abundancije) kočom iskoristivog fonda bentoskih naselja riba i jestivih avertebrata po zalivima i to za:

Iz prednjeg proizilazi ocjena stvarnog stanja obilja (abundancije) kočama iskoristivog fonda oentoskih naselja riba i jestivih avertebrata u Bokokotorskom zalivu zaokružena u hiljadama:

za Kotorski zaliv	$1,146.000$ kom	33.000 kg
za Risanski zaliv	445,000 kom	13.000 kg
za Tivatski zaliv	$1,750.000$ kom	641.000 kg
za Hercegnovski zaliv	$1,129.000 \mathrm{kom}$	31.000 kg
Bokokotorski zaliv	$4,470.000 \mathrm{kom}$	141.000 kg

Na osnovu naprijed procijenjene abundancije ukupnog fonda bentoskih naselja u Boknokotorskom zalivu treba odrediti dozvoljeni stepen eksploatacije (optimalni ribolov).

Prema rezultatima istrazivanja i procjenama FAO. - Biology Branch - Fisheries Division: The Present State of Knowlodge on Fisheries Resources in the Mediterranean. FAO (56/8) 6299, Wp 25/1, maksimalna moguénost eksploatacije bentoskih naselja može da iznosi do 40% od procijenjenih i raspolożivih koliěna. Iz toga proizilazi da bi svako izlovljavanje preku te granice imal2 za posljedicu pojavu prelova, tj. osiromaşenje naselja. Mi cemo u ovom radu upotrebiti taj procenat eksploatacije, $\mathrm{tj} .40^{\text {\%/ }}$ od procijenjenin kolicima. Ovaj kocficijent cemo primijenit iz razloga stto su bentoska naselja u Bokokotorskom zalivu sastavljena pretežno od populacija koje nisu vezane neposredno uz samo dno, pa pretpostavijamo da bi koeficijent ulova magao biti i manji od 0,25\%, koji smo upotrebili u ovom radu (Bückmann 1929.).

Prema tome, dozvoljena mogucnost elsploatacije bentoskih naseljal u Bokokotorskom zalivu i po pojedinim njegovim zalivima iznosila bi za:

Bokokotorski zaliy
40% od $4,470.000=1,788,000$ komada $141.000=56.000 \mathrm{~kg}$

Prema prednjim predračunima proizilazi da bi optimalni ulov dosad neiskorišćavane ribe 1 jestivih avertebrata u Bokokatorskom zalivu iznosio 56 tona godišnje. Pošto su ovo prva istraživanja bentoskih maselja u pomenutom Zalivu i prvi pokušaj konkretnog izračunavanja mogučnosti optimalnog ribolova u apsolutnim vrijednostima, to ce biti potrebno, nakon što bi se uveo praktiěni ribolov kočom, za izvjesno vrijeme vrsititi naužnu kontrolu i pratiti kretanje ulova po jedinici napore. Ukoliko ulov po jedinici napora i prosječne veličine ekomomski važnijih riba ne budu enatnije odstupali od današnjeg, to ce značiti da je postignut optimalní godišnjí ulov. U protivnom slučaju ulov ce trebati da se reguliğe smanjenjem 40%-tnog ulova od procijenjene abundancije. Ulov od $40^{\% /}$ od procijenjene abundancije predstavija zapravo maksimalno predviđeni procenat ulova. Za ovaj maksimalni odnos odlucili smo se, pores navedenih razloga, i stoga ssto je prakticki lakše woxiti ako se ribolov vrši iznad nego ispod optimuma. Osim toga područja Zaliva na čijem dinu zapreke onemogućavaju lov kočom predstavljaju prirodne rezervate i rezerve, iz kojih ce se stalno migracijom nadoknadivati dio naselja koja Ée se eksploatisati.

Da bismo dobili jasniju sliku o abundanciji bentoskih naselja u Bokokotorskom zalivu, trebalo bi ulove po jedinici napora iz ovog zaliva komparirati su onima koji su vršeni u istim ili sliěnim uslovima u drugim područjima što je praktiecki tesklko ostvarljivo. Pored toga, tačnija kompacacija je otežana i zato što se radi mrežama različitih veličina, razne snage brodova (obično vecim od našeg) i nešto vełe brzine povlačenja mreže. Medutim, radi orijentacije dacemo ipak komparativni pregled ulova koĆarskih brodova za 1960. godinu, koji su lovili u području sjevernog dijela Kvarneríca i nas̆eg ulova po jedinici napora po mjesecima:

Komparativni pregled ulova Kvarnernc - Bokokotorski zaliv Comporative survey of catch Kvarnerić - B K bay

Mjesec	Ulov po jednom satu Catch per hour		Index Kvarnerić z. $=100$
	Kvarneric	Bokokotorski z.	
Januar	11.06	19.73	178
Februar	13.89	15.50	111
Mart	8.98	19.87	221
April	9.84	20.87	212
Maj	10.88	18.85	173
Iuni	10.05	23.87	237
Fuli	9.02	24.00	266
August	8.00	33.37	417
Septembar	8.21	55.00	669
Oktobar	11.10	24.50	220
Novembar	10.35	11.00	106
Decembar	1391	23.00	165

Na osnovu prednje komparacije ulova po jedinici napora očita je konstatacija da je Bokokotorski zaliv daleko bogatiji od Kvarneriéa, barem pri današnjem stanju vjerovatnog prelova u području Kvarnerića. Ako uzmemo jos u obzir i cinjenicu da su brodovi i mreze kojima se lovilo u Kvarneriću vece od naşih, kao i brzina njihova povlačenja, pa time i izzlovljavana površina po jedinici napora, onda ova razlika u obilju náselja postaje još izrazitija.

VII DISKUSIJA

Pošto nismo raspolagali nikakvim prethodnim podacima, to u postavljenju i programiranju ovih istraživanja nismo imali nikalkvu određenu orijentaciju a prioritetnosti, obimu i obuhvatnosti problema. Ne samo da ranije nisu vršena nikakva istraživanja bentoskih naselja riba i avertenrata u Bokokoturskom zailvu, već nismo znali ni za kakve osnovne populacije, koje masovnije nastanjuju ovaj Zaliv, pos̄to se ranije u njenu nije kočarilo. U taku samog rada i prilikom obrade matertjala unčili smo, na primjer, da bi bilo potrebno i interesantno detaljnije obuhvatiti neke populacije, mriješcenje nekih vrsta, njihovu ishramu i dr.

Iz istih razloga, prilkom planiranja ovih istraživanja smatrali smo potrebnim da şto detaljnije obuhvatimo usnovne abiotske faktore od kojih smo mogli oċekivati da imaju osjetnijeg uticaja na stanje i dinamiku bentoskih naselja. Zbog toga su, logicho, i ova istraživanja zauzela vidno mjesto A našoj angažovanosti, a adekvatno tome i u ovom radu. Pored ostalog, potrebno je bilo izvrsiti kompletna morfomotrijska istraživanja i mjerenja. Pošto su rezultati ovih istraživanja smanje-više" stalne vrijecnosti, to mogu korisno poslužiti i u buđućem radu pri istraživanjema ovog Zaliva.

Istraživanjima bentoskih naselja ribu i jestivih avartebrata, smatramo da smo u ovom radu dali prou orijentacionu sliku njihovog stanja (distribucije i abundancije) te sezonske dinamike, a posebno mogucnosti ajihove praktične eksploatacije. Na osnovu podataka i zaključaka docivenih ovim radom bice potrebno ubuduće izdvojiti nekoliko osnovnih 1 ekonomskih najinteresontnijih populacija, te detaljnije proučití njihovu ekologiju i biologiju uopšte na ispitivanim područjina.

Da bismo mogli prouceiti zavisnost između kvantitativne distribucije i dinamike bentoskih naselja riba i avertebrata, te osnomih biotskib 1 abiotskih faktora sredine, bilo je potrebno da se u tom smislu jzvrše i odgovarajuça istraz̈ivanja. Tako na osnovu analiza sastava sedimenata dina (supstrata) nismo mogli konstatovati povezenost sa distribucijom bentoskih naselja riba, jako ona u mikroarealima vjerovatno postoji, Do jedne sigurnije konstatacije u ovom smislu nismo mogli doci u prvom redu iz razloga sto u citavom zalivu nismo našli veće areale sa razlicitim supstratom. Najvech dio povrsina morskog dna sastoji se iz gline, 3 ostatak iz kombirovanih toksturnih facijesa. Jedino na punktovima 13, 17,20 , i 21 ćestice od $2-0,05 \mathrm{~mm}$ sadržane su sa preko 50% u uzorku. S druge strane, c̈njenica da se ni jedna od B kočarskih pozicija nije nalazila citava na tipičnom teksturalnom facijasu dna (osim na glinastom) nije nam dozvoljavala da zaključujemo o njegovom uticaju na sastav i distribuciju ihtiobentosa.

Raxni autori, inace, imaju razlicita miśljenja o priforitetnom uticaju na sastav bentoskih zajjednica izmedu fiziökog karaktera dna ; hicrografskih prilika sredine. Tako Petersen (1915.) ističe vaz̈nost i priocitetnost uticaja edefakih faktora na distribuciju naselja. Bas (1957. i 1959.) smatra takoder da je distribucija pojedinih bentoskih organizama
u zavisnosti od sastava i konliguracije morskog dna itd. Nasuprot ovim, mnogi autori daju prioritet hidrografakim faktonima sredine kao primarnim u uticaju na stanje i dinamiku zivotinjskog svijeta u moru. Tako Shelford (1935.) na osnovu istrażivanja i dobivenih podataka tvrdi da su hidrografske prilike uticajnije na sastav bentaskih zajednica od edafskih faktora sredine. Jensen (1952.) je ispitivao uticaj hidrografskih faktora na naselja riba, te dokazao jaku korelaciju između tih faktora i nokih pridnenih populacija. Edwards (1959.) smatra da su sezonske promjene i dinamika populacija bentoskih riba tijesno povezane sa sezonskim temperaturnim promjenama. Pored navedenih i mnogi drugi autori istiću vaz̆nost i prioritel hidrografskih faktora na stanje i distribuciju bentoskih zajednica (Günter 1957., Clark 1959. i dr.).

Ako navedena miṡljenja i konstatacije uporedimo sa nas̃im podacima i rezultatima u Bokokotorskom zalivu, onda se u konkretnom sluvaju pridružujemo protagonistima, koji daju prioritet hidrografskim uslovima u odnosu na stanje i distribuciju bentoskih naselja riba. To potyrduju sezonski relativni odnosi između naselja i korelacija između nekih populacija i temperaturnih promjena pridnenih slojeva mora. Tako nam se pokazala izrazito pozitivna korelacija izmedu populacije Merluccius vulgaris (težinski, tj. kod veçih primjeraka) i temperature. Naprotiv, pozitivna korelacija koju smo dobili szmeđu nekih drugih populacija i temperature pokazala se kao verijaciono-statistacki neopravdana, vjerovaino zbog malog broja varijanata.

Interesantna je nadalje pojava izrazite korelacije izmedu kvantiteta bentoske zoomase (pretežno endofaune) i obilja naselja riba. Maksimalni nalaz bentoske endofaune bio je u ljeinim mjesecima (74,02 grama na $1 \mathrm{~m}^{2}$), što se upravo poklapa sa maksimalnim ulovom po jedinici napora. Pošto fauna dna (epi i endofauna) predstavlja i osnovni faktor ishrane za benloske ribe, to njihova medusobna korelaoija nije iznenadila naska oceekivanja. Međutim, vrlo je vjerovatna zavisnost izmedu temperature u sklopu kompleksa faktora i obilja endofaune. U kojoj mjeni pretez̆no temperatura utice direktno na dinamiku bentoskih naselja riba, a u kojoj indirektno preko povećane zoomase (endofaune) kao faktora ishrane za pridnenu ribu, o tome se, na osnovu nasih podataka, ne bi jos mogli donositi sigurni zaključei, jer su zato potrebna dugoročnija i intenzivnija istraživanja (sa više proba - varijanata).

Analize saliniteta najbolje su pokazale koliko je jako djelovanje kopnenih voda u ovom Zalivu.

Maksimalne vrij̧ednosti povrśinskog saliniteta konstatovane su u Hercegnovskom i Tivatskom zalivu ($37,84 \%$ i $37,87 \%$), 5to se moglo i ocekivati, jer se ova dva zaliva nalaze pod najslabijim direktnim djelovanjem priliva sa kopna i pod neposrednijim uticajem otvorenog mora, Nasuprot tome, minimalan stepen slanosti utvrden je u Kotorskom zalivu ($10,17^{\circ}$) $)$ koji se nalazi pod direktnim i najobilnijim djelovanjem priliva voda sa kopna navočito u kišnom periodu.

Godišnje amplitude saliniteta pridnenih slojeva su minimalne u odnosu na povrsinske ($27,70 \%$ na povrsini prema $3,92 \%$ pri dnu).

Interesantna je činjenica da nismo moglit konstatoveti totalnu emigraciju iz naselja u toku godine ni jedne vrste od vaz̈nijih bentaskih populacija, pa čak niti pojedinih kompletnih starasnih grupa odanosne populacije, vec o dinamiai zaključujemo uglavnom, samo ne osnovu pareljalnih variranja ulova po jedinici napora.

Pored ikvalitativno-kvantitativne analize bentoskih naselja ribai jestivih avertebrata u Bokokotorskom zalivu, ovim radom smo postavili zadatak da se ispita i utvrdi optimalna granica moguénosti njihove praktiène eksploatacije. Moramo istaci da je ovo prvi pokušaj da se kod nas na osnovu istraživanja deju i konkretni podaci (u apsolutnim vrijednostima) o stanju i mogucnostima eksploatacije odredenog područja. Zbog toga ciozvoljavamo mogucnost i izvjemih unvaprijed predvidenith korekcija, na koje bi ukazala sama praksa. Prednost za ovakvo postavljanje i rjes̃avanje ovog pitanja sestoji sc, dobrim dijelom i u fzolovanosti tj. relativnoj zatvorenosti samog Tilliva, što mu smanjuje uticaj otvorenog mora.

Za koeficijent ulova mreże 1 maksimalne mogucnosti eksploatacije upotrebljene su vrijednosti dobivene eksperjmentima u drugint morima i uslovima, sto ne isključuje mogućnost odredenog odstuganja u našim uslovima. Zbos toga, primjenom u praksu datih podataka o mogućnostima eksploatacije, bice potrebno da se kroz izvjesno vrijeme vrsti kontrola ulava po sastavu i količini. Ulov od 40% procijenjene abundancije może sc smanjiti, odnosno regulisati proma kretanju uloya po jednici napora, Pored toga, možda ulov bentoske ribe ne bi frebalo vrsitio u ljetnim mjesecima (od aprila do jula), tj. u doba mrijescenja pretežnog broja komponentnih ckonomski važnih vrsta.

Praktiéne telnicke mogućnosti najintenzivnijeg ribolova kroy. टitavu godinu su toliko povoljne u ovom Zalivu da bi bez stroge kontrole i ograničenja ulova sigurno i vrlo brzo došlo do opustošenja odgovarajuceg ribljeg fonda. Zbog tih tehnickih pogrodnosti i relativno malih troskova, ekonomski prelov bi u ovom sluçaju došao do izražaja mnogo kasnije od bjološkog. (Ekonomski prelov pojavljuje se u mornentu kada su troskovi proizvodnje veci od prihoda dobivenih ulovom, a biološki onda kada se osnovni fond u moru toliko oslabi preintenzivnim ribolovom da više nije u stanju da regeneracijom nadoknadi oduzcte količine). Do ekonomskog prelova mnogo ranije dolazi na udaljenijim područjima otvorenog mora, možda čak i znatno ranije od bioloskogg, jer su veći troškovi proizvodnje. Ovakvo shvatanje prevladava i u Prednacrtu novog zakona a murskom nibarstvu. U tom slučaju, navodno, zbog nerentabilnosti dolazi do prekida lova prije biološkog prelova, a time ujedno i do zastite osnovnog fonda. Ukoliko bi ovakvo shvatanje i bilo opravdario za neka područja, ono sc nikada i ni u kom slučaju ne bi moglo i ne bi smjelo primijeniti nat ovaj Zaliv.

Da bi se moglo prié istraživanjima i eksploataciji bilo je potrebno snimiti dne u čtavom Zalivu u cilju utvrđivanja podrueja na kojima je tehniekki omogucen ribolov kocom. Od tri zone, na koje smo podijelili Bokokotorski zaliv sobzirom na tu moguénost (vidi poglavlje 3. i SI. 6), smatramo da, uglavnom, samo u trećoj zoni nije omogucen lov povlačnim mrežama. Da bi se moglo loviṫ u drugoj zoni bilo bi potrebno konstruisati specijalne i mnogo evvš̌̌e mreže. Žog toga, kao i zbog pretpostavke da će se naselja ravnomjerno rasporedivati u swim zonama i nakon eksploatacije, u proračunima nismo uzelb u obsir razlicite tehnicke mogućnosti kočarenja u Zalivu. Kao najnižu dubinut odredili smo izobatu od 20 metara. jer smatramo da na plićim područjima ne bí trebalo loviti kočom

ZAKLJUCCI

Ovim istraživanjima data je prva slika stanja, distribucije i sezon-逢e dinamike bentoskih naselja riba i jestivih avertebrata u Bokokotorskom zalivu, kao i naučno fundirana ocjena moguénosti njihove praktične eksploatacije. Uporedo su izvišena istras̆lvanja osnovnih biotskih abiotskih faktora it to:

1. Izvršena su mjerenja i dati prvi morfometrijski podaci za Bokokotorski zaliv (povrşina ukupna, po zalivima i izobatama; zapremina akupna, te po zalivima, stepenicama i slojevima; srednje i maksimalne dubine i ṡirine zaliva, dužina obale i razuđenost).
2. Analize mehaniăkog sastava taloga dna sa podacima o sadržaju $\mathrm{Ca} \mathrm{CO}_{3}$, organskog CO_{2} (humusa) i pH. Pretežni dio taloga dna u Bokokotorskom zalivu je glinaste teksture sa maksimalnim sadržajem čestica do $0,01 \mathrm{~mm}$ ($63,76-89,80 \%$). U jednom dijelu Hercegnovskog zaliva nalazi se ilovasta glina i glinasti pijesalk, a na samom izlazu iz zaliva cisto pjeskovita dno. U Tivatskom zalivu, pored glinaste konsistencije dna, pronađena su manja podrueja sa glinasto-ilovastom i glinasto-pjeskovitom teksturom. Citav Kotorski zaliv pokazuje izrazito glinastu telssturu dna, a u Risanskom na manjoj površini pronađen je glinasti pijesak. Nije bilo moguce utvrditi uobičajeno opadanje veličine granulometrijskog sastava sa dubinom. Nasuprot toj uobičajenoj u utvrdenoj pojavi imamo slučajeve nalaza baš na vecim dubinama taloga sa krupnijim granulometrijskim sastavom čestica (Hercegnovski i djelimiěno Tivatski zaliv).

Zapaža se relativno nizzak sadržaj CaCO_{3} u odnosu na druga podru¿ja. Sadrzaj organskog CO_{2}, odnosno humusa konstatovan je na pet punktova u Bokokotorskom zalivu.
3. Zbog dosta izrażene jednoličnosti u raspodjeli supstrata nije btlo moguce utvrditi odredenu povezanost (korelaciju) izmedu taloga dna i distribucije bentoskih naselja riba i avertebrata.
4. Snimanjem morskog dna utvrdeno je da u jednom dijelu Bokokotorskog zaliva tehnički nije moguce vrsititi ribolov kočarenjem i to a trećoj zoni (sl. 6). Da bi se moglo loviti u drugoj zoni potrebno je konstruisati specijalne odgovarajuce mreže.
5. Godišnje kretanje temperature mora a Bokokotorskom zalivu podložno je uticaju jakog priliva slatke vode, cija temperaturna razlika " odnosu na morsku vodu iznosi $10-15^{\prime \prime} \mathrm{C}$. Ovaj uticaj slatkih voda ima za posljedicu nejednolično kolebanje temporature morske vode, tako da homotermija nije bila uspostavljena u periodu naših istraživanja

Površinski maksimum temperature se javio u Kotorskom zalivu ($25,1^{\prime \prime} \mathrm{C}$) teik u avgustu, a u ostala tri već u junu (u Rizanskom $24,5^{\circ} \mathrm{C}$, u Tivatskom $25,5^{\circ}$ C, u Hercegnovskom $25,4^{\circ}$ C), vjerovatno stoga sto se Kotorski zaliv nalazi pod najobilnijim i najdirektnijim djelovanjem slatkih voda i najslabijim uticajem otvorenog mora. Aktivnost priliva sa kopna se tada svodi na minimum, a u dosta slučajeva i sesvim prestaje. Insolacija ovdje vjerovatno, također, ima odredeni uticaj.

Povrsinski minimum konstatovan je u februaru takoder u Kotorskom zalivu i iznosio je $9,9^{\circ} \mathrm{C}$. Amplituda povrsinske temperature je bila $15,6^{\circ}$ C. Nasuprot ovako visokom godišnjem povisinskom temperaturnom gradijentu, temperaturna amplituda pridnenih slojeva iznosila je $9,9^{2} \mathrm{C}$.
6. Prozirnost mora u Bokokotorskom zalivu je osjetno niža nego u drugim kompariranim podruéjirnal (Kvarneriêu, Planinskom kanalu, Crikveničkom kanalu, Riječkom zalivu i Velim Vratima), ŝto ukazuje na veću bujnost suspendovane organske mase (fitoplanktona). Prozimosi mora raste od Kotorskog zaliva prema otvorenom moru.
7. Konstatovana je izvjesna korelacija izmedu temperaturnih kolebanja i obilja bentoskih naselja. Maksimalni ulov po jedinici nupora postiže se u kasnijim ljetnim mjesecima kod pridnenih temperatura od eca 16 do $19^{\circ} \mathrm{C}$, što odudara od norme u drugim podruèjima Jadrana.
8. Velike amplitude i nepravilnosti u variranju povrsinsice slanosti mora u Bokokotorskom zalivu su također posijedica zaslađivanja mora obilnim prilivima slatke vode sa kopna, kao i direktnim padavinama kojima obiluje ovaj kraj.

Godišnja amplituda površinskog saliniteta iznosi $27,70 \%$, dok pri dnu svega $3,92 \%$.

Zbog nepravilnosti is variranju 1 male amplitude saliniteta u donjim slojevimu mora, nismo mogli izvoditi zaključke o njihovom djelovanju na distribuciju i sezonska variranja bentoskih naselja riba i jestivih avertebrata.
9. Pokazuju se vrlo jaki korelacioni odnosi između bentoske zoofaune (naročito endomase) i ulova po jedinici napora, tako da se maksimum ulova po jedinici napora dosta pravilno poklapa sa maksimalnom težinom i volumenam endofaune (na $1 \mathrm{~m}^{2}$). Prema tome prołzišao bi zaključak dia je faktor ishrane jedan od osnovnih faktora obilja i distribucije bentoskila naselja riba i jestivih avertebrata u Bokokotorskom zalivu.
10. Ulov po jedinici napora bentoske ribe i jestivih avertebrata je daleko iznad prosjeka ulova na drugim sliẽnim područjima kod nas, iz éega treba zalljučiti da je daleko veca i gustina naselfa un ovom Zalivu. (Komparacija je izurşena sa ulovom po jedinici napora u Kvarneriću).
11. Ekonomski najinteresantnije vrste bentoske ribe u Bokokotorskom zalivu su: Pagellus erythrynus,, Smaris vulgaris, Mullus barbatus i Merluceius vulgaris.

Prisutne su u naseljima uglavnom u toku catave godine.
12. Iz analiza apsolutnih i relativnih gustina pojedinih populacija proizilazi da je stalnost populacija u naseljima konstantna, tj , da se dinamika citavog naselja uglavnom poklapa sa dinamikom populacija pojedinih vrsta riba koje ih sačinjavaju.
13. Populacija Mullus barbatus pokazuje osjetnija kolebanja ucestalosti u naselju u toku godine. Ovo je posljedica imigracije u naselju velikog broja vrlo sitnih primjeraka u ljetnim mjesecima na području Hercegnavskog zaliva.
14. Korelacioni odnosi pojedinih izdvojenih populacija prema biotskim i ablotskim faktorima sredine uglavnum se poklapaju sa korelacionim odnosima citavog naselja i tih faktora.
15. Izvršen je prvi pokušaj procjene abundancije naselja u Bokokotorskom zalivu na bazi ulova po jedinici napora i koefieijenta 0,25 (25%). Na osnovu takvog proračuna proizilazi obilje naselja bentoske ribe i jestivih avertebrata u zonama Bokokotorskog zalive dubljim od 20 m u ukupnom iznosu od 141 tone.
16. Za procjenu mogučnosti maksimaine eksploatacije korišten je omjer od 40% od procijenjene abundancije. Prema tom proračunu maksimalna moguénost stalne eksploatacije bentoske ribe kocom u Bokokotorsikom zalivu iznosila bì 56 tona godǐ̌nje. Iako je izvršen prvi pokusaa da se na bazi istraz̃ivanja naselja utvrdi i konkretna dozvoljena granica godišnje eksploatacije ispitivanog pocručjs (optimalni ribolov), ipak ce se morati i nakon eventualnog praktienog uvodenja kočarenja u Bokokotorskom zalivu strogo kontrolirati ulov bar za izvjesno viujeme, te na osnovu konkretnih podataka o kretanju ulova po jedinici napora i prosječnih veličina ulovljenih vrsta vrsiti eventualne korekture predvjđenog grocenta ulova od 40% u odnosu na procijenjenu abundanciju.
17. Za praktičnu eksploataciju bentoskih naselja povlačnim mrežama u Bokokotorskom zalivu izuzimaju se podrucja unutar izobata 0-20 cnetara. Prema tome, ukupna površina koja bi se eksploatisala ovim naEinom ribolova iznosila bi $63.698 \mathrm{~km}^{2}$.
18. Rezultati ovih prvih istraživanja bentoskih naselja riba i jestivih avertebrata u Bokokotorskom zalivu ukazuju na potrebu daljeg, detaljnijeg proữavanja ekologije i uopée biologije nekih posebno interesantnih vrsta (uključivsi dinamike njihovih populacija), kao i drugih kompleksnih istrazivanja ovog jedinstvenog i interesantnog Zaliva.
19. Za izlowljavanje procjenjenih količina u iznosu od 56 tona do sada neiskoristive bentoske ribe i jestivih avertebrata u Bokokotorskom zalivu bio bi potreban samo jedan manji brod skočar* od cea 15 m dužine sa odgovarajučim motorom, mrežama i ćetiri ćlana posade. Ova ribolovna jedinica ne bi čak bila u potpunosti apsorbovana kroz čitavu godinu.

Materijalni troškovi proizvodnje su minimalni, jer se radi o ograničenim i potpuno zaklonjenim područjima, sa najkracim odstojanjima do lovišla na kojima se može kočariti u svako doba godine prema potrebi i potraz̆nji trżišta, bez obzira na vremenske pribike i rizik, sto predstavlja osnovne poteškocie u kočarenju na otvorenome moru u zimsitim njjesecima.

Prema tome, sve ove akolnosti ukazuju na ncobično visoku rentabilnost, koju, smatramo, nije potrebno posebno dokazivati na ovom mjestu.
20. Navedeni vrlo povoljni ekonomski uslovi, odnosno rentabilnost praktične eksploatactje, još više ukazuju na već konstatovanu potrebu efikasme kontrole u ograničavanju godiśnjeg ulova. Zbog toga smatramo da bi bilo najumjesnije da se praktična - eksperimentalna eksploatacija ovog Zaliva pomoću koče povjeri za izvjesno vrijeme jednoj stručno-naučnol organizaciji. Taj period eksperimentalne elkspkoatacije trajao bi do konačne praktične potvrde nasih postavkii i zaključaka, to bi se u tom roku, prema potrebi, izvrälle i eventualne korekture, koje su kao moguće i predvidene, ovim radom, nakon čega bi se moglo pristupiti praktičnoj eksploataciji ovog Zaliva.

IX LITERATURA

Alfircvic, S. 1958: Rezultati morfoloških i geoloskih istrażivanja sedimneata u sredinjem Jadranu. Hidrografski godisnjak 1956/1957 Split.
Alfirevice, S. 1960: Quelques resultats sur la carte geologique des fonds chalutables dans les chenaux de l'Adriatique moynne. Proc. et Techn. Rap. FAD. Vol. V1. Rome.
Ananiadis, C. 1949: Study on the biology of the red Mullet Mullus barbatas (Rond) forma typica (Fage) in the Aegean Sea.
Andreu, B. y J. Rodrigucz - Roda, 1951: La pesca maritima en Castellon-Renditrienta por unidad de esfuerzo (1945-1949) y consideraciones biomatrice de las especies de interés commercial. Inst. Biol. Apl., Tomo VIIL. Barcelona.
Bas. C. 1957: La geographie du fond et tétat acturl de la pecche des espèces d'intérèt industriel. Débats et Documents techniqucs, CGPM, No 4, Rome.
Bas, C. 1959: Some characteristics of the biological and dynamical properties of the fish species of the deep sea. Procceding and Technical Papers, GFCM, № 5. Ronie.
Baranov, F. 1918: The Biological Basis of the Fisheries. Moscow.
Belloc, G. 1929: Etude monographique du Merlu, Merluccius vulgaris. Revue du Travaux de l'office des pesches maritimes. Tome II. Fasc. 2,3 Paris.
Beverton, J. H. R. and S. J. Holt, 1957: On the Dynamics of Exploited Fi'h Populations. London.
Baugis, F. 1950: Sur un allongement des nageoires pectorales corrélatil dun changement de milieu, cbez les jeuncs Mullus. Vfe et Milieu, Tome 1. fasc. 2. Paris.
Bougis, P. 1952: Recherches biometriques sur les rougets (Mullus barbatus L., Nullus summuletus L.) Archh. Zool. Exp. of Gen. T, 89. Facs. 2.
Bougis, P. et R. Muz̀inic, 1958: Sur la criossance de Mullus barbatus (L.) dans los eaux de Split. Acta Adriation, Vol. VIII, No 9. Split.
Bougis, P, 1052: La croissance der poissons Mediterrannćes. Vic et Milieu, Suppl. No 2.
Boureatt. J. 1926: Observations prsliminaire sur la lectrnique des Bouches de Cattaro (Exstrait des Coniptes - rendus des sćances de l'Academie des Sciences, 1926, Paris).
Buekmann, A. 1929: Die Methodik fischercibiologischer Untersuchungen ant Meerestischen. Berlin.
Buljan, M. 1953. The flustuations of salinity in Adriatic ${ }^{\text {sHvara }}$ - Reports, Vol. II. Ne 2, Split.

Buljan, M. and Marinkovic, M. 1956t Some Data on Hydrography on the Adriatic. Acta Adriatica. Split.
Buljan, M. 1957: Fluctuation of temperature in the waters of the open Adriatic, Acta Adriatica, Vol. VIll. Na 7. Split.
Buljan, M. 1958: Fluctuations of temperature in the waters of the open and deep Adrialic. Kapp. Proc, - Verb. Volumen XIV. (nouvelle serie). CIESMM. Paris.
Clark, J. R. 1959; Seasomal changes in Abundance within a Community of Demersal fishes. Inst. Ocean. Congress. Amer. Ass. Adv. Sci. Washington. D. C. (Reprints).
Cruković, D. 1963: Prohlematika ribolova kocom u kanaiskom području sjeveroistoc̃nog Jadrana. Morsko Ribarstvo. Zagreb.
D.Ancona, U. 1926: Dell influcnza della stasi peschereccia del periodo 1914 1918 sul patrimonio ittico dell Alto Adriatico. Memoria CXXVI - Venczia.
D'Ancona, U. 1934. Ulteriori osservazioni sulle statistiche della pesca dell' Alto Adriatico. Memoria CCIV. Venczia.

D＇Ancona，U．1950：Rilievi statistici sulla pesca nell＇Alto Adriatico．Atti jell Isti－ tuto Veneto di Scienze lettere ed arti．－Tomo CVIII，Venezia．
De Marchi，L．1920：Le correnti dell Adriatico secondo la distribuzione superti－ ciale della salsedine e della temperatura．Reale Com．Talassografico ltal， Mcmoria LV．
Edwards，R．L．1954．Quantitative Analysys of Marine Fish Communities and their Seasonal and Areal Variations．Inst．Occan．Congress．Awer．Ass．Adv． Sci．Washington．D．C．（Preprints）．
Breegović，A 1934：Temperature，salinite，oxygene et phosphats des eaux coticres dell＇Adriatique oriental moyen．Acta Adriatica．Split．
Ercegović，A．1938：Ispitivanja hidrogralskih prilika i fitoplanktona u vodana Boke u jesen 1937．Split．
Ercegovic，A．1949：Żivot u moru．Zagreb．
FAO－Biology Branch－Fisheries Division．The Present State of Knowledge on Fisheries Resources in the Mediterranean FAO（56／8）6299，Wp．25／1．
Gamulin－Brida 1926：Biocerioze dubljeg litorala u kanalima srednjeg Jadrana． Acta Adriatica．Split．
Gamulin－Brida 1963：Contribution a la recherche des biocenoses bentiques dell Adriatique meridionale．Acta Adriatica．Split，
Gamulin，I．1938：Prilog poznavanju planktonskih kopepoda Boke Kotorske．Split． Gast，R．1918：Einiges uber die Motorenfischerci bei Fiume．Osterr．Fischerei Zeitung．XV．Jahrg．No 5，bis 10 ．Wien．
Graćanin，M．1947：Pedologija 11．dio－Fiziografija tala．Zagreb．
Graeffc，E．1888：Uebersicht der Seetierfauna des Golfes von Triest．Abr．Zool． inst．Wien－Triest．
Graham，M．1935：Modern Theory of Exploiting a Fishery and Application to North Sea Trawling．J．du Cons．Vol．X．No 3，Copenhague．
Graham，M．1952：Overfishing and Optimum Fishing．Rap．et Proc．Verb．Vol． CXXXII．Copenhague．
Graham，M．1939：The Sigmoid curve and the Overlishing Problem－Rapp，et Proc．Verb．Vol．CX．Copenhague．
Grubisič，F．1959：Novi podaci o maksimalnim du⿳亠丷厂⿰㇒⿻土一𧘇 Split．
Grubisié，F．i Gospodnclić，G．1953：Povlačne mreže－razvoj，tehnika ¡ navigacija．Split．
Gulland，J．A．1955：Estimation of growth and Mortality in Commrecial Fish populations．Fishery Invest．Series 11．Vol．XVIII N＿9．London．
Gunter，G．1945：Studies on Marine Fishes of Texas．Inst．Marine Science，Pub， Vol．1．N2 1 Austin．
Gunter，G．1957：Temperature．In Treatise on Marine Ecology I（Geol Soc．Amer．）． Baltimore．
Hart，T．J，1947；Report on trawling survey on the Patagonian Continental shelf． Discovery Reports，Vol．XXIII．Cambridge．
Heincke，F．1913：Untersuchungen iber die Scholle Generalbericht I Schollen． fischerei und Schommassregeln．Rapp．e proc．Verb．Vol．XVII A．Edition Allemande，Copenhague．
Jensen，J．C．A，1952：The Influence of Hydrographical Factors on Fish Stocks and Fisherics in the Transition Area，especially on their Tluctuations from year to ycar．Rapp．Proc．－Verb．Vol．CXXXI．Copenhague．
Jones，N．S．1950：Marine bottom communities．Biol．Reviews．Vol．25．No 3. Cambridge．
Karlovac，O．1956：Station list of the M．V．${ }^{\text {sHerm }}$ Fishery－biological cruises 1948－1949．Reports，Vol．I．No 3．Split．

Kirinčić, J. et V. Lepetic, 1955: Recherches sur lichtyobenthos dans les profonderus de l'Adriatique méridionale et possibilite d'eaploitation at moyen des palangres. Acta Adriatica Vol. VII. No I. Split,
Kotthaus, A. i Zei, M. 1938: Izvjestaj o pokusnom ribarenju *kočome u Hrvatskom primorju. Godišnjak Oceanogralskog instituta, sv. II. Split.
Kolosvary. G. 1938: Echinodermata iz Boke Kotorske. Split.
Krćmar, J. 1926: Jadransko More, Dubrovnik.
Linardic, J. 1940: Prilog poznavanju geografskog rasprostranjenja jadranskog Fucusa (Fucu-s virsoides (DONN.) J. Ag. Zagreb.
Lorenz, J. R. 1883: Physikalische verhältnisse und Verteilung der Organismen in Quarnerischen Golfe. Wien.
Mancini, L. 1929: Crociera di pesca per lo studio del fondo marino Golfo di Trieste e la costa occidentale Istriana, Memorie Scion. No 3. Serie B. Genova.
Milojević, V. 1953: Boka Kotorska. SAN. Beograd.
Morovice, D. 1951: Composition mecanique des sediments au large de l'Adriatique: "Hyar" - Reports. Vol. III. No 1. Split.
Pasqini, P. 1926: Per una maggiore conoscenza della pesca adriatica ed insulare Bollettino di pesca... Anno II, fasc. 2. Roma.
Pesta, O. Die Decapodenfauna der Adria - Leipzig und Wien, 1918.
Piccoti, e Vatova, A. 1942: Osservazioni fisiche e chimiche periodiche nell'Alto Adriatico. Thalassia. Venezia.
Planas, A. F. Vivosy P. Suau, 1955: Estudio de los peces jovenos capturades con artes de arrastre o sbou* Invest. Pesq. Tomo. II. Barcelona.
Petersen, C. G.J. 1911: Valuation of the sea. 1. Animal life of the sea - boltorn, its food and quantity. Rep. Danish Biol. Stat. Vol. 20, Copenhagen.
Petersen, C.G. 1915: On the animal communities of the sea botlomi in the Skagerrak, the Christiana Fjord and the Danish waters. Rep. Dan. Biol. Stat Vol. 23. Copenhagen.
Russel, E. S. 1931: Some Theoretical Considerations on the over-Fishinge Problem. J. du Conseil, Vol. VI. № 1. Copenhague.
Russe1, E. S. 1939: An Elementary Treatment of the Overfisting Problem. Rapp. et Proc. Verb, Vol. CX, Copenhague.
Russo, A. 1928: Studii sula pesca nel Golfo di Catania. Bollettino di pesca... Anno IV. fasc. 5. Roma.
Scaccini, A. 1947: Conitributo alla conoscenza della biologia dei Mullidi nell-Adriatico medio occidentale. Note del Lab. Biol marina di Fano. Vol. I. No 1. Bologna.
Seaccini, A. 1947; Laccrescimento e la proporzione dei sessi nella popolazione adriatica di Mullus barbatus Rond. Note de Lab, marina di FANO Vol. 1. Nu 3.
Shelford, W.E.A.O. Weese, L.A. Rice, D.I. Rasmussen, N.M. Wismer and J.H. Swanson, 1935: Some marine Biotic Communities of the Pacific coast of North America, Ecol. Monog. 5.
Sverdrup, H.U., Johmson, M., Fleming, R. 1946: The Oceans their Physics, Chemistry and General Biology. New - York.
§yrski, S. 1876: Riguardo al tempo della frega degli animali esistenti nel mare Adriatico. Trieste.
Soljan, T. 1948: Ribe Jadrana. Fauna i flora Jadrana. Knjig. I. Split.
Tavčar, A. Biometrika u poljoprivredi. Zagreb.
Thompson, W.F. and Bell. F.H. 1934: Biological Statistics of the Pacific Halibut Fishery 2. Rep. Internat. Fish. Comni. No 8. Seatle. Wash.
Vatova, A. 1928: Compendio delia Flora e Fauna del Mare Adriatico presso Rovigio. Memoria CXXIII - Venczia.

Vatova, A. 1934: Ricerche quantitative sul bentos del golfo di Rovigno. Note Ist. ital. - germ. Rov. 12 - Venezia.
Vatova, A. 1935: Ricerche preliminari sulle biocenosi del gollo di Rovigoo. Thalassin Vol. II. No 2, Venezia.
Vatova, A. 1940: La fauna bentonica del Bacino di Pomo. Note Ist. Italo, - germ. Rov. No 15, Vol. 2, Venezia.
Vatova, A. 1943: Le zoocenosi dell'alto Adriatico presso Rovigno e loro variazioni nello spazio e nel tempo. Thalassia, Vol. V. No 6. Venczin.
Vatova, A. 1947: Le zoocenosi bentoniche dell Adriatico. Boll. di pesca piscicoltura e idrobiologia. Anno XXII, I. fasc. 2. Roma.
Vatova, A. 1347; Caratteri cella fauna bentonica dell Alto e Medio Adriatico e zoocenosi cuì dá originc. Pubbl. della Staz. Zool, di Napoli. Vol. XXI, Fasc. 1.
Napoli.
Vatova, A. 1948: Ricerche sulla fauna bentonica e loro impertanza per la pesca. La ricerce sc . Ann. 18, pp. 975-980.
Vatova, A. 1949: La fauna dell'Alto e Medio Adriatico Nova Thalassia. 1/3 Venezia.
Vuletic, A. 1952; Structure geologique du fond du Malo et du Veliko Jezero sur File de Mljel. Acta Adriatica. Split.
Wolf, J. und Luksch, J. 1887: Physik Unters, in der Adria. . in vier Berichten an die K. und K. Seebehörde zu Fiume. Mittl, aus dom Gobjoto des Seewesens...
Zei, M. i Sabionce11o, 1. 1940: Prilog poznavanju naselja bentoskil, riba u kanalima srednje Dalmacije. Godišnjak Oceanografskog instituta sv. IL. Split of Maenidae. Acta Adriatica. Split
Zei, M. 1941: Studies on the morphology and taxonomy of the Adriatic species
Zei, M. 1949: Razishovanje s travlom na ribolovnom području vihodnog Jadrana. Ljubljana.
Lei, M. 1949: Ova and developmental stadies of Maena smaris (L.) and Maena Chryselis (C. V.) Split.
Zei, M. and Zupanovic, \$. 1961: Contribution to the serual cycle and sex reversal in Pagellus crythrinus L. Rapp. et Proc. Verb. CIESMM Vol, XVI (2), Copenhague.

Zloković, D. 1939: Hidragrafske prilike okoline Risna u Boki Kotorskoj. Arhiv Ministarstva poljoprivrede. God. VI. sv. XV. Beograd:
Zore, M. i Zupan, A. 1960: Hidrografski podaci za Kas̆telanski zaliv 1953-1954. Acta Adriatica. Vol. IX No 1. Split.
Zupanović, s. 1953: Statistical Analysis of Catches by Trawling in the Fishing Regions of the Eastern Adriatic. Acta Atriatica. Vol. V Ne 8. Split.
Zupanović, S. 1959: Influence de l'intensité d'exploatation sur la composition du stock de poisson. Debats et Document techniques No 5. FAO. Rome.
2upanović, Š. 1961: Kvantitativno-kvalitativna analiza ribljih naselja kanala srednjeg Jadrana. Acta Adriatica. Vol. IX No 3. Split.
2.upanović, S. 1961: Produktivnost i intenzitet cksploatacije Jadrana. Anali Jadranskog institula. sv. III, Zagreb.
Zupanovic, s, 1964: Iskoriśćavanje ribljeg fonda Jadrana. Beograd.

[^0]: *Medu vrstama riba ut sakupljenom materijalu nalaze se ut manjim koli cinama i neke viste koje ne spadaju a ihtiobentos.

 The specinens which were collected with bottom trawl may include a few specimens mot strictly benthic

[^1]:
 VAITVZ HIINSVYLINN IDVGOd İSSIGLGNOAYON

